proof_test.go 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103
  1. // Copyright 2015 The go-ethereum Authors
  2. // This file is part of the go-ethereum library.
  3. //
  4. // The go-ethereum library is free software: you can redistribute it and/or modify
  5. // it under the terms of the GNU Lesser General Public License as published by
  6. // the Free Software Foundation, either version 3 of the License, or
  7. // (at your option) any later version.
  8. //
  9. // The go-ethereum library is distributed in the hope that it will be useful,
  10. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. // GNU Lesser General Public License for more details.
  13. //
  14. // You should have received a copy of the GNU Lesser General Public License
  15. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
  16. package trie
  17. import (
  18. "bytes"
  19. crand "crypto/rand"
  20. "encoding/binary"
  21. mrand "math/rand"
  22. "sort"
  23. "testing"
  24. "time"
  25. "github.com/ethereum/go-ethereum/common"
  26. "github.com/ethereum/go-ethereum/core/rawdb"
  27. "github.com/ethereum/go-ethereum/crypto"
  28. "github.com/ethereum/go-ethereum/ethdb/memorydb"
  29. )
  30. func init() {
  31. mrand.Seed(time.Now().Unix())
  32. }
  33. // makeProvers creates Merkle trie provers based on different implementations to
  34. // test all variations.
  35. func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
  36. var provers []func(key []byte) *memorydb.Database
  37. // Create a direct trie based Merkle prover
  38. provers = append(provers, func(key []byte) *memorydb.Database {
  39. proof := memorydb.New()
  40. trie.Prove(key, 0, proof)
  41. return proof
  42. })
  43. // Create a leaf iterator based Merkle prover
  44. provers = append(provers, func(key []byte) *memorydb.Database {
  45. proof := memorydb.New()
  46. if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
  47. for _, p := range it.Prove() {
  48. proof.Put(crypto.Keccak256(p), p)
  49. }
  50. }
  51. return proof
  52. })
  53. return provers
  54. }
  55. func TestProof(t *testing.T) {
  56. trie, vals := randomTrie(500)
  57. root := trie.Hash()
  58. for i, prover := range makeProvers(trie) {
  59. for _, kv := range vals {
  60. proof := prover(kv.k)
  61. if proof == nil {
  62. t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
  63. }
  64. val, err := VerifyProof(root, kv.k, proof)
  65. if err != nil {
  66. t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
  67. }
  68. if !bytes.Equal(val, kv.v) {
  69. t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
  70. }
  71. }
  72. }
  73. }
  74. func TestOneElementProof(t *testing.T) {
  75. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  76. updateString(trie, "k", "v")
  77. for i, prover := range makeProvers(trie) {
  78. proof := prover([]byte("k"))
  79. if proof == nil {
  80. t.Fatalf("prover %d: nil proof", i)
  81. }
  82. if proof.Len() != 1 {
  83. t.Errorf("prover %d: proof should have one element", i)
  84. }
  85. val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
  86. if err != nil {
  87. t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  88. }
  89. if !bytes.Equal(val, []byte("v")) {
  90. t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
  91. }
  92. }
  93. }
  94. func TestBadProof(t *testing.T) {
  95. trie, vals := randomTrie(800)
  96. root := trie.Hash()
  97. for i, prover := range makeProvers(trie) {
  98. for _, kv := range vals {
  99. proof := prover(kv.k)
  100. if proof == nil {
  101. t.Fatalf("prover %d: nil proof", i)
  102. }
  103. it := proof.NewIterator(nil, nil)
  104. for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
  105. it.Next()
  106. }
  107. key := it.Key()
  108. val, _ := proof.Get(key)
  109. proof.Delete(key)
  110. it.Release()
  111. mutateByte(val)
  112. proof.Put(crypto.Keccak256(val), val)
  113. if _, err := VerifyProof(root, kv.k, proof); err == nil {
  114. t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
  115. }
  116. }
  117. }
  118. }
  119. // Tests that missing keys can also be proven. The test explicitly uses a single
  120. // entry trie and checks for missing keys both before and after the single entry.
  121. func TestMissingKeyProof(t *testing.T) {
  122. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  123. updateString(trie, "k", "v")
  124. for i, key := range []string{"a", "j", "l", "z"} {
  125. proof := memorydb.New()
  126. trie.Prove([]byte(key), 0, proof)
  127. if proof.Len() != 1 {
  128. t.Errorf("test %d: proof should have one element", i)
  129. }
  130. val, err := VerifyProof(trie.Hash(), []byte(key), proof)
  131. if err != nil {
  132. t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  133. }
  134. if val != nil {
  135. t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
  136. }
  137. }
  138. }
  139. type entrySlice []*kv
  140. func (p entrySlice) Len() int { return len(p) }
  141. func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
  142. func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
  143. // TestRangeProof tests normal range proof with both edge proofs
  144. // as the existent proof. The test cases are generated randomly.
  145. func TestRangeProof(t *testing.T) {
  146. trie, vals := randomTrie(4096)
  147. var entries entrySlice
  148. for _, kv := range vals {
  149. entries = append(entries, kv)
  150. }
  151. sort.Sort(entries)
  152. for i := 0; i < 500; i++ {
  153. start := mrand.Intn(len(entries))
  154. end := mrand.Intn(len(entries)-start) + start + 1
  155. proof := memorydb.New()
  156. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  157. t.Fatalf("Failed to prove the first node %v", err)
  158. }
  159. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  160. t.Fatalf("Failed to prove the last node %v", err)
  161. }
  162. var keys [][]byte
  163. var vals [][]byte
  164. for i := start; i < end; i++ {
  165. keys = append(keys, entries[i].k)
  166. vals = append(vals, entries[i].v)
  167. }
  168. _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
  169. if err != nil {
  170. t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  171. }
  172. }
  173. }
  174. // TestRangeProof tests normal range proof with two non-existent proofs.
  175. // The test cases are generated randomly.
  176. func TestRangeProofWithNonExistentProof(t *testing.T) {
  177. trie, vals := randomTrie(4096)
  178. var entries entrySlice
  179. for _, kv := range vals {
  180. entries = append(entries, kv)
  181. }
  182. sort.Sort(entries)
  183. for i := 0; i < 500; i++ {
  184. start := mrand.Intn(len(entries))
  185. end := mrand.Intn(len(entries)-start) + start + 1
  186. proof := memorydb.New()
  187. // Short circuit if the decreased key is same with the previous key
  188. first := decreaseKey(common.CopyBytes(entries[start].k))
  189. if start != 0 && bytes.Equal(first, entries[start-1].k) {
  190. continue
  191. }
  192. // Short circuit if the decreased key is underflow
  193. if bytes.Compare(first, entries[start].k) > 0 {
  194. continue
  195. }
  196. // Short circuit if the increased key is same with the next key
  197. last := increaseKey(common.CopyBytes(entries[end-1].k))
  198. if end != len(entries) && bytes.Equal(last, entries[end].k) {
  199. continue
  200. }
  201. // Short circuit if the increased key is overflow
  202. if bytes.Compare(last, entries[end-1].k) < 0 {
  203. continue
  204. }
  205. if err := trie.Prove(first, 0, proof); err != nil {
  206. t.Fatalf("Failed to prove the first node %v", err)
  207. }
  208. if err := trie.Prove(last, 0, proof); err != nil {
  209. t.Fatalf("Failed to prove the last node %v", err)
  210. }
  211. var keys [][]byte
  212. var vals [][]byte
  213. for i := start; i < end; i++ {
  214. keys = append(keys, entries[i].k)
  215. vals = append(vals, entries[i].v)
  216. }
  217. _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
  218. if err != nil {
  219. t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  220. }
  221. }
  222. // Special case, two edge proofs for two edge key.
  223. proof := memorydb.New()
  224. first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
  225. last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
  226. if err := trie.Prove(first, 0, proof); err != nil {
  227. t.Fatalf("Failed to prove the first node %v", err)
  228. }
  229. if err := trie.Prove(last, 0, proof); err != nil {
  230. t.Fatalf("Failed to prove the last node %v", err)
  231. }
  232. var k [][]byte
  233. var v [][]byte
  234. for i := 0; i < len(entries); i++ {
  235. k = append(k, entries[i].k)
  236. v = append(v, entries[i].v)
  237. }
  238. _, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
  239. if err != nil {
  240. t.Fatal("Failed to verify whole rang with non-existent edges")
  241. }
  242. }
  243. // TestRangeProofWithInvalidNonExistentProof tests such scenarios:
  244. // - There exists a gap between the first element and the left edge proof
  245. // - There exists a gap between the last element and the right edge proof
  246. func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
  247. trie, vals := randomTrie(4096)
  248. var entries entrySlice
  249. for _, kv := range vals {
  250. entries = append(entries, kv)
  251. }
  252. sort.Sort(entries)
  253. // Case 1
  254. start, end := 100, 200
  255. first := decreaseKey(common.CopyBytes(entries[start].k))
  256. proof := memorydb.New()
  257. if err := trie.Prove(first, 0, proof); err != nil {
  258. t.Fatalf("Failed to prove the first node %v", err)
  259. }
  260. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  261. t.Fatalf("Failed to prove the last node %v", err)
  262. }
  263. start = 105 // Gap created
  264. k := make([][]byte, 0)
  265. v := make([][]byte, 0)
  266. for i := start; i < end; i++ {
  267. k = append(k, entries[i].k)
  268. v = append(v, entries[i].v)
  269. }
  270. _, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
  271. if err == nil {
  272. t.Fatalf("Expected to detect the error, got nil")
  273. }
  274. // Case 2
  275. start, end = 100, 200
  276. last := increaseKey(common.CopyBytes(entries[end-1].k))
  277. proof = memorydb.New()
  278. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  279. t.Fatalf("Failed to prove the first node %v", err)
  280. }
  281. if err := trie.Prove(last, 0, proof); err != nil {
  282. t.Fatalf("Failed to prove the last node %v", err)
  283. }
  284. end = 195 // Capped slice
  285. k = make([][]byte, 0)
  286. v = make([][]byte, 0)
  287. for i := start; i < end; i++ {
  288. k = append(k, entries[i].k)
  289. v = append(v, entries[i].v)
  290. }
  291. _, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
  292. if err == nil {
  293. t.Fatalf("Expected to detect the error, got nil")
  294. }
  295. }
  296. // TestOneElementRangeProof tests the proof with only one
  297. // element. The first edge proof can be existent one or
  298. // non-existent one.
  299. func TestOneElementRangeProof(t *testing.T) {
  300. trie, vals := randomTrie(4096)
  301. var entries entrySlice
  302. for _, kv := range vals {
  303. entries = append(entries, kv)
  304. }
  305. sort.Sort(entries)
  306. // One element with existent edge proof, both edge proofs
  307. // point to the SAME key.
  308. start := 1000
  309. proof := memorydb.New()
  310. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  311. t.Fatalf("Failed to prove the first node %v", err)
  312. }
  313. _, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  314. if err != nil {
  315. t.Fatalf("Expected no error, got %v", err)
  316. }
  317. // One element with left non-existent edge proof
  318. start = 1000
  319. first := decreaseKey(common.CopyBytes(entries[start].k))
  320. proof = memorydb.New()
  321. if err := trie.Prove(first, 0, proof); err != nil {
  322. t.Fatalf("Failed to prove the first node %v", err)
  323. }
  324. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  325. t.Fatalf("Failed to prove the last node %v", err)
  326. }
  327. _, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  328. if err != nil {
  329. t.Fatalf("Expected no error, got %v", err)
  330. }
  331. // One element with right non-existent edge proof
  332. start = 1000
  333. last := increaseKey(common.CopyBytes(entries[start].k))
  334. proof = memorydb.New()
  335. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  336. t.Fatalf("Failed to prove the first node %v", err)
  337. }
  338. if err := trie.Prove(last, 0, proof); err != nil {
  339. t.Fatalf("Failed to prove the last node %v", err)
  340. }
  341. _, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  342. if err != nil {
  343. t.Fatalf("Expected no error, got %v", err)
  344. }
  345. // One element with two non-existent edge proofs
  346. start = 1000
  347. first, last = decreaseKey(common.CopyBytes(entries[start].k)), increaseKey(common.CopyBytes(entries[start].k))
  348. proof = memorydb.New()
  349. if err := trie.Prove(first, 0, proof); err != nil {
  350. t.Fatalf("Failed to prove the first node %v", err)
  351. }
  352. if err := trie.Prove(last, 0, proof); err != nil {
  353. t.Fatalf("Failed to prove the last node %v", err)
  354. }
  355. _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  356. if err != nil {
  357. t.Fatalf("Expected no error, got %v", err)
  358. }
  359. // Test the mini trie with only a single element.
  360. tinyTrie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  361. entry := &kv{randBytes(32), randBytes(20), false}
  362. tinyTrie.Update(entry.k, entry.v)
  363. first = common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
  364. last = entry.k
  365. proof = memorydb.New()
  366. if err := tinyTrie.Prove(first, 0, proof); err != nil {
  367. t.Fatalf("Failed to prove the first node %v", err)
  368. }
  369. if err := tinyTrie.Prove(last, 0, proof); err != nil {
  370. t.Fatalf("Failed to prove the last node %v", err)
  371. }
  372. _, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof)
  373. if err != nil {
  374. t.Fatalf("Expected no error, got %v", err)
  375. }
  376. }
  377. // TestAllElementsProof tests the range proof with all elements.
  378. // The edge proofs can be nil.
  379. func TestAllElementsProof(t *testing.T) {
  380. trie, vals := randomTrie(4096)
  381. var entries entrySlice
  382. for _, kv := range vals {
  383. entries = append(entries, kv)
  384. }
  385. sort.Sort(entries)
  386. var k [][]byte
  387. var v [][]byte
  388. for i := 0; i < len(entries); i++ {
  389. k = append(k, entries[i].k)
  390. v = append(v, entries[i].v)
  391. }
  392. _, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
  393. if err != nil {
  394. t.Fatalf("Expected no error, got %v", err)
  395. }
  396. // With edge proofs, it should still work.
  397. proof := memorydb.New()
  398. if err := trie.Prove(entries[0].k, 0, proof); err != nil {
  399. t.Fatalf("Failed to prove the first node %v", err)
  400. }
  401. if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil {
  402. t.Fatalf("Failed to prove the last node %v", err)
  403. }
  404. _, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
  405. if err != nil {
  406. t.Fatalf("Expected no error, got %v", err)
  407. }
  408. // Even with non-existent edge proofs, it should still work.
  409. proof = memorydb.New()
  410. first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
  411. last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
  412. if err := trie.Prove(first, 0, proof); err != nil {
  413. t.Fatalf("Failed to prove the first node %v", err)
  414. }
  415. if err := trie.Prove(last, 0, proof); err != nil {
  416. t.Fatalf("Failed to prove the last node %v", err)
  417. }
  418. _, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
  419. if err != nil {
  420. t.Fatalf("Expected no error, got %v", err)
  421. }
  422. }
  423. // TestSingleSideRangeProof tests the range starts from zero.
  424. func TestSingleSideRangeProof(t *testing.T) {
  425. for i := 0; i < 64; i++ {
  426. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  427. var entries entrySlice
  428. for i := 0; i < 4096; i++ {
  429. value := &kv{randBytes(32), randBytes(20), false}
  430. trie.Update(value.k, value.v)
  431. entries = append(entries, value)
  432. }
  433. sort.Sort(entries)
  434. var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
  435. for _, pos := range cases {
  436. proof := memorydb.New()
  437. if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil {
  438. t.Fatalf("Failed to prove the first node %v", err)
  439. }
  440. if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
  441. t.Fatalf("Failed to prove the first node %v", err)
  442. }
  443. k := make([][]byte, 0)
  444. v := make([][]byte, 0)
  445. for i := 0; i <= pos; i++ {
  446. k = append(k, entries[i].k)
  447. v = append(v, entries[i].v)
  448. }
  449. _, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
  450. if err != nil {
  451. t.Fatalf("Expected no error, got %v", err)
  452. }
  453. }
  454. }
  455. }
  456. // TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff.
  457. func TestReverseSingleSideRangeProof(t *testing.T) {
  458. for i := 0; i < 64; i++ {
  459. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  460. var entries entrySlice
  461. for i := 0; i < 4096; i++ {
  462. value := &kv{randBytes(32), randBytes(20), false}
  463. trie.Update(value.k, value.v)
  464. entries = append(entries, value)
  465. }
  466. sort.Sort(entries)
  467. var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
  468. for _, pos := range cases {
  469. proof := memorydb.New()
  470. if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
  471. t.Fatalf("Failed to prove the first node %v", err)
  472. }
  473. last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
  474. if err := trie.Prove(last.Bytes(), 0, proof); err != nil {
  475. t.Fatalf("Failed to prove the last node %v", err)
  476. }
  477. k := make([][]byte, 0)
  478. v := make([][]byte, 0)
  479. for i := pos; i < len(entries); i++ {
  480. k = append(k, entries[i].k)
  481. v = append(v, entries[i].v)
  482. }
  483. _, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
  484. if err != nil {
  485. t.Fatalf("Expected no error, got %v", err)
  486. }
  487. }
  488. }
  489. }
  490. // TestBadRangeProof tests a few cases which the proof is wrong.
  491. // The prover is expected to detect the error.
  492. func TestBadRangeProof(t *testing.T) {
  493. trie, vals := randomTrie(4096)
  494. var entries entrySlice
  495. for _, kv := range vals {
  496. entries = append(entries, kv)
  497. }
  498. sort.Sort(entries)
  499. for i := 0; i < 500; i++ {
  500. start := mrand.Intn(len(entries))
  501. end := mrand.Intn(len(entries)-start) + start + 1
  502. proof := memorydb.New()
  503. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  504. t.Fatalf("Failed to prove the first node %v", err)
  505. }
  506. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  507. t.Fatalf("Failed to prove the last node %v", err)
  508. }
  509. var keys [][]byte
  510. var vals [][]byte
  511. for i := start; i < end; i++ {
  512. keys = append(keys, entries[i].k)
  513. vals = append(vals, entries[i].v)
  514. }
  515. var first, last = keys[0], keys[len(keys)-1]
  516. testcase := mrand.Intn(6)
  517. var index int
  518. switch testcase {
  519. case 0:
  520. // Modified key
  521. index = mrand.Intn(end - start)
  522. keys[index] = randBytes(32) // In theory it can't be same
  523. case 1:
  524. // Modified val
  525. index = mrand.Intn(end - start)
  526. vals[index] = randBytes(20) // In theory it can't be same
  527. case 2:
  528. // Gapped entry slice
  529. index = mrand.Intn(end - start)
  530. if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
  531. continue
  532. }
  533. keys = append(keys[:index], keys[index+1:]...)
  534. vals = append(vals[:index], vals[index+1:]...)
  535. case 3:
  536. // Out of order
  537. index1 := mrand.Intn(end - start)
  538. index2 := mrand.Intn(end - start)
  539. if index1 == index2 {
  540. continue
  541. }
  542. keys[index1], keys[index2] = keys[index2], keys[index1]
  543. vals[index1], vals[index2] = vals[index2], vals[index1]
  544. case 4:
  545. // Set random key to nil, do nothing
  546. index = mrand.Intn(end - start)
  547. keys[index] = nil
  548. case 5:
  549. // Set random value to nil, deletion
  550. index = mrand.Intn(end - start)
  551. vals[index] = nil
  552. }
  553. _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
  554. if err == nil {
  555. t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
  556. }
  557. }
  558. }
  559. // TestGappedRangeProof focuses on the small trie with embedded nodes.
  560. // If the gapped node is embedded in the trie, it should be detected too.
  561. func TestGappedRangeProof(t *testing.T) {
  562. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  563. var entries []*kv // Sorted entries
  564. for i := byte(0); i < 10; i++ {
  565. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  566. trie.Update(value.k, value.v)
  567. entries = append(entries, value)
  568. }
  569. first, last := 2, 8
  570. proof := memorydb.New()
  571. if err := trie.Prove(entries[first].k, 0, proof); err != nil {
  572. t.Fatalf("Failed to prove the first node %v", err)
  573. }
  574. if err := trie.Prove(entries[last-1].k, 0, proof); err != nil {
  575. t.Fatalf("Failed to prove the last node %v", err)
  576. }
  577. var keys [][]byte
  578. var vals [][]byte
  579. for i := first; i < last; i++ {
  580. if i == (first+last)/2 {
  581. continue
  582. }
  583. keys = append(keys, entries[i].k)
  584. vals = append(vals, entries[i].v)
  585. }
  586. _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
  587. if err == nil {
  588. t.Fatal("expect error, got nil")
  589. }
  590. }
  591. // TestSameSideProofs tests the element is not in the range covered by proofs
  592. func TestSameSideProofs(t *testing.T) {
  593. trie, vals := randomTrie(4096)
  594. var entries entrySlice
  595. for _, kv := range vals {
  596. entries = append(entries, kv)
  597. }
  598. sort.Sort(entries)
  599. pos := 1000
  600. first := decreaseKey(common.CopyBytes(entries[pos].k))
  601. first = decreaseKey(first)
  602. last := decreaseKey(common.CopyBytes(entries[pos].k))
  603. proof := memorydb.New()
  604. if err := trie.Prove(first, 0, proof); err != nil {
  605. t.Fatalf("Failed to prove the first node %v", err)
  606. }
  607. if err := trie.Prove(last, 0, proof); err != nil {
  608. t.Fatalf("Failed to prove the last node %v", err)
  609. }
  610. _, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
  611. if err == nil {
  612. t.Fatalf("Expected error, got nil")
  613. }
  614. first = increaseKey(common.CopyBytes(entries[pos].k))
  615. last = increaseKey(common.CopyBytes(entries[pos].k))
  616. last = increaseKey(last)
  617. proof = memorydb.New()
  618. if err := trie.Prove(first, 0, proof); err != nil {
  619. t.Fatalf("Failed to prove the first node %v", err)
  620. }
  621. if err := trie.Prove(last, 0, proof); err != nil {
  622. t.Fatalf("Failed to prove the last node %v", err)
  623. }
  624. _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
  625. if err == nil {
  626. t.Fatalf("Expected error, got nil")
  627. }
  628. }
  629. func TestHasRightElement(t *testing.T) {
  630. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  631. var entries entrySlice
  632. for i := 0; i < 4096; i++ {
  633. value := &kv{randBytes(32), randBytes(20), false}
  634. trie.Update(value.k, value.v)
  635. entries = append(entries, value)
  636. }
  637. sort.Sort(entries)
  638. var cases = []struct {
  639. start int
  640. end int
  641. hasMore bool
  642. }{
  643. {-1, 1, true}, // single element with non-existent left proof
  644. {0, 1, true}, // single element with existent left proof
  645. {0, 10, true},
  646. {50, 100, true},
  647. {50, len(entries), false}, // No more element expected
  648. {len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key)
  649. {len(entries) - 1, -1, false}, // Single last element with non-existent right proof
  650. {0, len(entries), false}, // The whole set with existent left proof
  651. {-1, len(entries), false}, // The whole set with non-existent left proof
  652. {-1, -1, false}, // The whole set with non-existent left/right proof
  653. }
  654. for _, c := range cases {
  655. var (
  656. firstKey []byte
  657. lastKey []byte
  658. start = c.start
  659. end = c.end
  660. proof = memorydb.New()
  661. )
  662. if c.start == -1 {
  663. firstKey, start = common.Hash{}.Bytes(), 0
  664. if err := trie.Prove(firstKey, 0, proof); err != nil {
  665. t.Fatalf("Failed to prove the first node %v", err)
  666. }
  667. } else {
  668. firstKey = entries[c.start].k
  669. if err := trie.Prove(entries[c.start].k, 0, proof); err != nil {
  670. t.Fatalf("Failed to prove the first node %v", err)
  671. }
  672. }
  673. if c.end == -1 {
  674. lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries)
  675. if err := trie.Prove(lastKey, 0, proof); err != nil {
  676. t.Fatalf("Failed to prove the first node %v", err)
  677. }
  678. } else {
  679. lastKey = entries[c.end-1].k
  680. if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil {
  681. t.Fatalf("Failed to prove the first node %v", err)
  682. }
  683. }
  684. k := make([][]byte, 0)
  685. v := make([][]byte, 0)
  686. for i := start; i < end; i++ {
  687. k = append(k, entries[i].k)
  688. v = append(v, entries[i].v)
  689. }
  690. hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
  691. if err != nil {
  692. t.Fatalf("Expected no error, got %v", err)
  693. }
  694. if hasMore != c.hasMore {
  695. t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
  696. }
  697. }
  698. }
  699. // TestEmptyRangeProof tests the range proof with "no" element.
  700. // The first edge proof must be a non-existent proof.
  701. func TestEmptyRangeProof(t *testing.T) {
  702. trie, vals := randomTrie(4096)
  703. var entries entrySlice
  704. for _, kv := range vals {
  705. entries = append(entries, kv)
  706. }
  707. sort.Sort(entries)
  708. var cases = []struct {
  709. pos int
  710. err bool
  711. }{
  712. {len(entries) - 1, false},
  713. {500, true},
  714. }
  715. for _, c := range cases {
  716. proof := memorydb.New()
  717. first := increaseKey(common.CopyBytes(entries[c.pos].k))
  718. if err := trie.Prove(first, 0, proof); err != nil {
  719. t.Fatalf("Failed to prove the first node %v", err)
  720. }
  721. _, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
  722. if c.err && err == nil {
  723. t.Fatalf("Expected error, got nil")
  724. }
  725. if !c.err && err != nil {
  726. t.Fatalf("Expected no error, got %v", err)
  727. }
  728. }
  729. }
  730. // TestBloatedProof tests a malicious proof, where the proof is more or less the
  731. // whole trie. Previously we didn't accept such packets, but the new APIs do, so
  732. // lets leave this test as a bit weird, but present.
  733. func TestBloatedProof(t *testing.T) {
  734. // Use a small trie
  735. trie, kvs := nonRandomTrie(100)
  736. var entries entrySlice
  737. for _, kv := range kvs {
  738. entries = append(entries, kv)
  739. }
  740. sort.Sort(entries)
  741. var keys [][]byte
  742. var vals [][]byte
  743. proof := memorydb.New()
  744. // In the 'malicious' case, we add proofs for every single item
  745. // (but only one key/value pair used as leaf)
  746. for i, entry := range entries {
  747. trie.Prove(entry.k, 0, proof)
  748. if i == 50 {
  749. keys = append(keys, entry.k)
  750. vals = append(vals, entry.v)
  751. }
  752. }
  753. // For reference, we use the same function, but _only_ prove the first
  754. // and last element
  755. want := memorydb.New()
  756. trie.Prove(keys[0], 0, want)
  757. trie.Prove(keys[len(keys)-1], 0, want)
  758. if _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof); err != nil {
  759. t.Fatalf("expected bloated proof to succeed, got %v", err)
  760. }
  761. }
  762. // TestEmptyValueRangeProof tests normal range proof with both edge proofs
  763. // as the existent proof, but with an extra empty value included, which is a
  764. // noop technically, but practically should be rejected.
  765. func TestEmptyValueRangeProof(t *testing.T) {
  766. trie, values := randomTrie(512)
  767. var entries entrySlice
  768. for _, kv := range values {
  769. entries = append(entries, kv)
  770. }
  771. sort.Sort(entries)
  772. // Create a new entry with a slightly modified key
  773. mid := len(entries) / 2
  774. key := common.CopyBytes(entries[mid-1].k)
  775. for n := len(key) - 1; n >= 0; n-- {
  776. if key[n] < 0xff {
  777. key[n]++
  778. break
  779. }
  780. }
  781. noop := &kv{key, []byte{}, false}
  782. entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
  783. start, end := 1, len(entries)-1
  784. proof := memorydb.New()
  785. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  786. t.Fatalf("Failed to prove the first node %v", err)
  787. }
  788. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  789. t.Fatalf("Failed to prove the last node %v", err)
  790. }
  791. var keys [][]byte
  792. var vals [][]byte
  793. for i := start; i < end; i++ {
  794. keys = append(keys, entries[i].k)
  795. vals = append(vals, entries[i].v)
  796. }
  797. _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
  798. if err == nil {
  799. t.Fatalf("Expected failure on noop entry")
  800. }
  801. }
  802. // TestAllElementsEmptyValueRangeProof tests the range proof with all elements,
  803. // but with an extra empty value included, which is a noop technically, but
  804. // practically should be rejected.
  805. func TestAllElementsEmptyValueRangeProof(t *testing.T) {
  806. trie, values := randomTrie(512)
  807. var entries entrySlice
  808. for _, kv := range values {
  809. entries = append(entries, kv)
  810. }
  811. sort.Sort(entries)
  812. // Create a new entry with a slightly modified key
  813. mid := len(entries) / 2
  814. key := common.CopyBytes(entries[mid-1].k)
  815. for n := len(key) - 1; n >= 0; n-- {
  816. if key[n] < 0xff {
  817. key[n]++
  818. break
  819. }
  820. }
  821. noop := &kv{key, []byte{}, false}
  822. entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
  823. var keys [][]byte
  824. var vals [][]byte
  825. for i := 0; i < len(entries); i++ {
  826. keys = append(keys, entries[i].k)
  827. vals = append(vals, entries[i].v)
  828. }
  829. _, err := VerifyRangeProof(trie.Hash(), nil, nil, keys, vals, nil)
  830. if err == nil {
  831. t.Fatalf("Expected failure on noop entry")
  832. }
  833. }
  834. // mutateByte changes one byte in b.
  835. func mutateByte(b []byte) {
  836. for r := mrand.Intn(len(b)); ; {
  837. new := byte(mrand.Intn(255))
  838. if new != b[r] {
  839. b[r] = new
  840. break
  841. }
  842. }
  843. }
  844. func increaseKey(key []byte) []byte {
  845. for i := len(key) - 1; i >= 0; i-- {
  846. key[i]++
  847. if key[i] != 0x0 {
  848. break
  849. }
  850. }
  851. return key
  852. }
  853. func decreaseKey(key []byte) []byte {
  854. for i := len(key) - 1; i >= 0; i-- {
  855. key[i]--
  856. if key[i] != 0xff {
  857. break
  858. }
  859. }
  860. return key
  861. }
  862. func BenchmarkProve(b *testing.B) {
  863. trie, vals := randomTrie(100)
  864. var keys []string
  865. for k := range vals {
  866. keys = append(keys, k)
  867. }
  868. b.ResetTimer()
  869. for i := 0; i < b.N; i++ {
  870. kv := vals[keys[i%len(keys)]]
  871. proofs := memorydb.New()
  872. if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
  873. b.Fatalf("zero length proof for %x", kv.k)
  874. }
  875. }
  876. }
  877. func BenchmarkVerifyProof(b *testing.B) {
  878. trie, vals := randomTrie(100)
  879. root := trie.Hash()
  880. var keys []string
  881. var proofs []*memorydb.Database
  882. for k := range vals {
  883. keys = append(keys, k)
  884. proof := memorydb.New()
  885. trie.Prove([]byte(k), 0, proof)
  886. proofs = append(proofs, proof)
  887. }
  888. b.ResetTimer()
  889. for i := 0; i < b.N; i++ {
  890. im := i % len(keys)
  891. if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
  892. b.Fatalf("key %x: %v", keys[im], err)
  893. }
  894. }
  895. }
  896. func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
  897. func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
  898. func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
  899. func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
  900. func benchmarkVerifyRangeProof(b *testing.B, size int) {
  901. trie, vals := randomTrie(8192)
  902. var entries entrySlice
  903. for _, kv := range vals {
  904. entries = append(entries, kv)
  905. }
  906. sort.Sort(entries)
  907. start := 2
  908. end := start + size
  909. proof := memorydb.New()
  910. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  911. b.Fatalf("Failed to prove the first node %v", err)
  912. }
  913. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  914. b.Fatalf("Failed to prove the last node %v", err)
  915. }
  916. var keys [][]byte
  917. var values [][]byte
  918. for i := start; i < end; i++ {
  919. keys = append(keys, entries[i].k)
  920. values = append(values, entries[i].v)
  921. }
  922. b.ResetTimer()
  923. for i := 0; i < b.N; i++ {
  924. _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
  925. if err != nil {
  926. b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  927. }
  928. }
  929. }
  930. func BenchmarkVerifyRangeNoProof10(b *testing.B) { benchmarkVerifyRangeNoProof(b, 100) }
  931. func BenchmarkVerifyRangeNoProof500(b *testing.B) { benchmarkVerifyRangeNoProof(b, 500) }
  932. func BenchmarkVerifyRangeNoProof1000(b *testing.B) { benchmarkVerifyRangeNoProof(b, 1000) }
  933. func benchmarkVerifyRangeNoProof(b *testing.B, size int) {
  934. trie, vals := randomTrie(size)
  935. var entries entrySlice
  936. for _, kv := range vals {
  937. entries = append(entries, kv)
  938. }
  939. sort.Sort(entries)
  940. var keys [][]byte
  941. var values [][]byte
  942. for _, entry := range entries {
  943. keys = append(keys, entry.k)
  944. values = append(values, entry.v)
  945. }
  946. b.ResetTimer()
  947. for i := 0; i < b.N; i++ {
  948. _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil)
  949. if err != nil {
  950. b.Fatalf("Expected no error, got %v", err)
  951. }
  952. }
  953. }
  954. func randomTrie(n int) (*Trie, map[string]*kv) {
  955. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  956. vals := make(map[string]*kv)
  957. for i := byte(0); i < 100; i++ {
  958. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  959. value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
  960. trie.Update(value.k, value.v)
  961. trie.Update(value2.k, value2.v)
  962. vals[string(value.k)] = value
  963. vals[string(value2.k)] = value2
  964. }
  965. for i := 0; i < n; i++ {
  966. value := &kv{randBytes(32), randBytes(20), false}
  967. trie.Update(value.k, value.v)
  968. vals[string(value.k)] = value
  969. }
  970. return trie, vals
  971. }
  972. func randBytes(n int) []byte {
  973. r := make([]byte, n)
  974. crand.Read(r)
  975. return r
  976. }
  977. func nonRandomTrie(n int) (*Trie, map[string]*kv) {
  978. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  979. vals := make(map[string]*kv)
  980. max := uint64(0xffffffffffffffff)
  981. for i := uint64(0); i < uint64(n); i++ {
  982. value := make([]byte, 32)
  983. key := make([]byte, 32)
  984. binary.LittleEndian.PutUint64(key, i)
  985. binary.LittleEndian.PutUint64(value, i-max)
  986. //value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  987. elem := &kv{key, value, false}
  988. trie.Update(elem.k, elem.v)
  989. vals[string(elem.k)] = elem
  990. }
  991. return trie, vals
  992. }
  993. func TestRangeProofKeysWithSharedPrefix(t *testing.T) {
  994. keys := [][]byte{
  995. common.Hex2Bytes("aa10000000000000000000000000000000000000000000000000000000000000"),
  996. common.Hex2Bytes("aa20000000000000000000000000000000000000000000000000000000000000"),
  997. }
  998. vals := [][]byte{
  999. common.Hex2Bytes("02"),
  1000. common.Hex2Bytes("03"),
  1001. }
  1002. trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase()))
  1003. for i, key := range keys {
  1004. trie.Update(key, vals[i])
  1005. }
  1006. root := trie.Hash()
  1007. proof := memorydb.New()
  1008. start := common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000")
  1009. end := common.Hex2Bytes("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
  1010. if err := trie.Prove(start, 0, proof); err != nil {
  1011. t.Fatalf("failed to prove start: %v", err)
  1012. }
  1013. if err := trie.Prove(end, 0, proof); err != nil {
  1014. t.Fatalf("failed to prove end: %v", err)
  1015. }
  1016. more, err := VerifyRangeProof(root, start, end, keys, vals, proof)
  1017. if err != nil {
  1018. t.Fatalf("failed to verify range proof: %v", err)
  1019. }
  1020. if more != false {
  1021. t.Error("expected more to be false")
  1022. }
  1023. }