| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635 |
- // Copyright 2016 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package core
- import (
- "container/heap"
- "math"
- "math/big"
- "sort"
- "sync"
- "sync/atomic"
- "time"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/core/types"
- )
- // nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
- // retrieving sorted transactions from the possibly gapped future queue.
- type nonceHeap []uint64
- func (h nonceHeap) Len() int { return len(h) }
- func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
- func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
- func (h *nonceHeap) Push(x interface{}) {
- *h = append(*h, x.(uint64))
- }
- func (h *nonceHeap) Pop() interface{} {
- old := *h
- n := len(old)
- x := old[n-1]
- *h = old[0 : n-1]
- return x
- }
- // txSortedMap is a nonce->transaction hash map with a heap based index to allow
- // iterating over the contents in a nonce-incrementing way.
- type txSortedMap struct {
- items map[uint64]*types.Transaction // Hash map storing the transaction data
- index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
- cache types.Transactions // Cache of the transactions already sorted
- }
- // newTxSortedMap creates a new nonce-sorted transaction map.
- func newTxSortedMap() *txSortedMap {
- return &txSortedMap{
- items: make(map[uint64]*types.Transaction),
- index: new(nonceHeap),
- }
- }
- // Get retrieves the current transactions associated with the given nonce.
- func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
- return m.items[nonce]
- }
- // Put inserts a new transaction into the map, also updating the map's nonce
- // index. If a transaction already exists with the same nonce, it's overwritten.
- func (m *txSortedMap) Put(tx *types.Transaction) {
- nonce := tx.Nonce()
- if m.items[nonce] == nil {
- heap.Push(m.index, nonce)
- }
- m.items[nonce], m.cache = tx, nil
- }
- // Forward removes all transactions from the map with a nonce lower than the
- // provided threshold. Every removed transaction is returned for any post-removal
- // maintenance.
- func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
- var removed types.Transactions
- // Pop off heap items until the threshold is reached
- for m.index.Len() > 0 && (*m.index)[0] < threshold {
- nonce := heap.Pop(m.index).(uint64)
- removed = append(removed, m.items[nonce])
- delete(m.items, nonce)
- }
- // If we had a cached order, shift the front
- if m.cache != nil {
- m.cache = m.cache[len(removed):]
- }
- return removed
- }
- // Filter iterates over the list of transactions and removes all of them for which
- // the specified function evaluates to true.
- // Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
- // If you want to do several consecutive filterings, it's therefore better to first
- // do a .filter(func1) followed by .Filter(func2) or reheap()
- func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
- removed := m.filter(filter)
- // If transactions were removed, the heap and cache are ruined
- if len(removed) > 0 {
- m.reheap()
- }
- return removed
- }
- func (m *txSortedMap) reheap() {
- *m.index = make([]uint64, 0, len(m.items))
- for nonce := range m.items {
- *m.index = append(*m.index, nonce)
- }
- heap.Init(m.index)
- m.cache = nil
- }
- // filter is identical to Filter, but **does not** regenerate the heap. This method
- // should only be used if followed immediately by a call to Filter or reheap()
- func (m *txSortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
- var removed types.Transactions
- // Collect all the transactions to filter out
- for nonce, tx := range m.items {
- if filter(tx) {
- removed = append(removed, tx)
- delete(m.items, nonce)
- }
- }
- if len(removed) > 0 {
- m.cache = nil
- }
- return removed
- }
- // Cap places a hard limit on the number of items, returning all transactions
- // exceeding that limit.
- func (m *txSortedMap) Cap(threshold int) types.Transactions {
- // Short circuit if the number of items is under the limit
- if len(m.items) <= threshold {
- return nil
- }
- // Otherwise gather and drop the highest nonce'd transactions
- var drops types.Transactions
- sort.Sort(*m.index)
- for size := len(m.items); size > threshold; size-- {
- drops = append(drops, m.items[(*m.index)[size-1]])
- delete(m.items, (*m.index)[size-1])
- }
- *m.index = (*m.index)[:threshold]
- heap.Init(m.index)
- // If we had a cache, shift the back
- if m.cache != nil {
- m.cache = m.cache[:len(m.cache)-len(drops)]
- }
- return drops
- }
- // Remove deletes a transaction from the maintained map, returning whether the
- // transaction was found.
- func (m *txSortedMap) Remove(nonce uint64) bool {
- // Short circuit if no transaction is present
- _, ok := m.items[nonce]
- if !ok {
- return false
- }
- // Otherwise delete the transaction and fix the heap index
- for i := 0; i < m.index.Len(); i++ {
- if (*m.index)[i] == nonce {
- heap.Remove(m.index, i)
- break
- }
- }
- delete(m.items, nonce)
- m.cache = nil
- return true
- }
- // Ready retrieves a sequentially increasing list of transactions starting at the
- // provided nonce that is ready for processing. The returned transactions will be
- // removed from the list.
- //
- // Note, all transactions with nonces lower than start will also be returned to
- // prevent getting into and invalid state. This is not something that should ever
- // happen but better to be self correcting than failing!
- func (m *txSortedMap) Ready(start uint64) types.Transactions {
- // Short circuit if no transactions are available
- if m.index.Len() == 0 || (*m.index)[0] > start {
- return nil
- }
- // Otherwise start accumulating incremental transactions
- var ready types.Transactions
- for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
- ready = append(ready, m.items[next])
- delete(m.items, next)
- heap.Pop(m.index)
- }
- m.cache = nil
- return ready
- }
- // Len returns the length of the transaction map.
- func (m *txSortedMap) Len() int {
- return len(m.items)
- }
- func (m *txSortedMap) flatten() types.Transactions {
- // If the sorting was not cached yet, create and cache it
- if m.cache == nil {
- m.cache = make(types.Transactions, 0, len(m.items))
- for _, tx := range m.items {
- m.cache = append(m.cache, tx)
- }
- sort.Sort(types.TxByNonce(m.cache))
- }
- return m.cache
- }
- // Flatten creates a nonce-sorted slice of transactions based on the loosely
- // sorted internal representation. The result of the sorting is cached in case
- // it's requested again before any modifications are made to the contents.
- func (m *txSortedMap) Flatten() types.Transactions {
- // Copy the cache to prevent accidental modifications
- cache := m.flatten()
- txs := make(types.Transactions, len(cache))
- copy(txs, cache)
- return txs
- }
- // LastElement returns the last element of a flattened list, thus, the
- // transaction with the highest nonce
- func (m *txSortedMap) LastElement() *types.Transaction {
- cache := m.flatten()
- return cache[len(cache)-1]
- }
- // txList is a "list" of transactions belonging to an account, sorted by account
- // nonce. The same type can be used both for storing contiguous transactions for
- // the executable/pending queue; and for storing gapped transactions for the non-
- // executable/future queue, with minor behavioral changes.
- type txList struct {
- strict bool // Whether nonces are strictly continuous or not
- txs *txSortedMap // Heap indexed sorted hash map of the transactions
- costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
- gascap uint64 // Gas limit of the highest spending transaction (reset only if exceeds block limit)
- }
- // newTxList create a new transaction list for maintaining nonce-indexable fast,
- // gapped, sortable transaction lists.
- func newTxList(strict bool) *txList {
- return &txList{
- strict: strict,
- txs: newTxSortedMap(),
- costcap: new(big.Int),
- }
- }
- // Overlaps returns whether the transaction specified has the same nonce as one
- // already contained within the list.
- func (l *txList) Overlaps(tx *types.Transaction) bool {
- return l.txs.Get(tx.Nonce()) != nil
- }
- // Add tries to insert a new transaction into the list, returning whether the
- // transaction was accepted, and if yes, any previous transaction it replaced.
- //
- // If the new transaction is accepted into the list, the lists' cost and gas
- // thresholds are also potentially updated.
- func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
- // If there's an older better transaction, abort
- old := l.txs.Get(tx.Nonce())
- if old != nil {
- if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 {
- return false, nil
- }
- // thresholdFeeCap = oldFC * (100 + priceBump) / 100
- a := big.NewInt(100 + int64(priceBump))
- aFeeCap := new(big.Int).Mul(a, old.GasFeeCap())
- aTip := a.Mul(a, old.GasTipCap())
- // thresholdTip = oldTip * (100 + priceBump) / 100
- b := big.NewInt(100)
- thresholdFeeCap := aFeeCap.Div(aFeeCap, b)
- thresholdTip := aTip.Div(aTip, b)
- // We have to ensure that both the new fee cap and tip are higher than the
- // old ones as well as checking the percentage threshold to ensure that
- // this is accurate for low (Wei-level) gas price replacements.
- if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 {
- return false, nil
- }
- }
- // Otherwise overwrite the old transaction with the current one
- l.txs.Put(tx)
- if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
- l.costcap = cost
- }
- if gas := tx.Gas(); l.gascap < gas {
- l.gascap = gas
- }
- return true, old
- }
- // Forward removes all transactions from the list with a nonce lower than the
- // provided threshold. Every removed transaction is returned for any post-removal
- // maintenance.
- func (l *txList) Forward(threshold uint64) types.Transactions {
- return l.txs.Forward(threshold)
- }
- // Filter removes all transactions from the list with a cost or gas limit higher
- // than the provided thresholds. Every removed transaction is returned for any
- // post-removal maintenance. Strict-mode invalidated transactions are also
- // returned.
- //
- // This method uses the cached costcap and gascap to quickly decide if there's even
- // a point in calculating all the costs or if the balance covers all. If the threshold
- // is lower than the costgas cap, the caps will be reset to a new high after removing
- // the newly invalidated transactions.
- func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
- // If all transactions are below the threshold, short circuit
- if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
- return nil, nil
- }
- l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
- l.gascap = gasLimit
- // Filter out all the transactions above the account's funds
- removed := l.txs.Filter(func(tx *types.Transaction) bool {
- return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
- })
- if len(removed) == 0 {
- return nil, nil
- }
- var invalids types.Transactions
- // If the list was strict, filter anything above the lowest nonce
- if l.strict {
- lowest := uint64(math.MaxUint64)
- for _, tx := range removed {
- if nonce := tx.Nonce(); lowest > nonce {
- lowest = nonce
- }
- }
- invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
- }
- l.txs.reheap()
- return removed, invalids
- }
- // Cap places a hard limit on the number of items, returning all transactions
- // exceeding that limit.
- func (l *txList) Cap(threshold int) types.Transactions {
- return l.txs.Cap(threshold)
- }
- // Remove deletes a transaction from the maintained list, returning whether the
- // transaction was found, and also returning any transaction invalidated due to
- // the deletion (strict mode only).
- func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
- // Remove the transaction from the set
- nonce := tx.Nonce()
- if removed := l.txs.Remove(nonce); !removed {
- return false, nil
- }
- // In strict mode, filter out non-executable transactions
- if l.strict {
- return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
- }
- return true, nil
- }
- // Ready retrieves a sequentially increasing list of transactions starting at the
- // provided nonce that is ready for processing. The returned transactions will be
- // removed from the list.
- //
- // Note, all transactions with nonces lower than start will also be returned to
- // prevent getting into and invalid state. This is not something that should ever
- // happen but better to be self correcting than failing!
- func (l *txList) Ready(start uint64) types.Transactions {
- return l.txs.Ready(start)
- }
- // Len returns the length of the transaction list.
- func (l *txList) Len() int {
- return l.txs.Len()
- }
- // Empty returns whether the list of transactions is empty or not.
- func (l *txList) Empty() bool {
- return l.Len() == 0
- }
- // Flatten creates a nonce-sorted slice of transactions based on the loosely
- // sorted internal representation. The result of the sorting is cached in case
- // it's requested again before any modifications are made to the contents.
- func (l *txList) Flatten() types.Transactions {
- return l.txs.Flatten()
- }
- // LastElement returns the last element of a flattened list, thus, the
- // transaction with the highest nonce
- func (l *txList) LastElement() *types.Transaction {
- return l.txs.LastElement()
- }
- // priceHeap is a heap.Interface implementation over transactions for retrieving
- // price-sorted transactions to discard when the pool fills up. If baseFee is set
- // then the heap is sorted based on the effective tip based on the given base fee.
- // If baseFee is nil then the sorting is based on gasFeeCap.
- type priceHeap struct {
- baseFee *big.Int // heap should always be re-sorted after baseFee is changed
- list []*types.Transaction
- }
- func (h *priceHeap) Len() int { return len(h.list) }
- func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] }
- func (h *priceHeap) Less(i, j int) bool {
- switch h.cmp(h.list[i], h.list[j]) {
- case -1:
- return true
- case 1:
- return false
- default:
- return h.list[i].Nonce() > h.list[j].Nonce()
- }
- }
- func (h *priceHeap) cmp(a, b *types.Transaction) int {
- if h.baseFee != nil {
- // Compare effective tips if baseFee is specified
- if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 {
- return c
- }
- }
- // Compare fee caps if baseFee is not specified or effective tips are equal
- if c := a.GasFeeCapCmp(b); c != 0 {
- return c
- }
- // Compare tips if effective tips and fee caps are equal
- return a.GasTipCapCmp(b)
- }
- func (h *priceHeap) Push(x interface{}) {
- tx := x.(*types.Transaction)
- h.list = append(h.list, tx)
- }
- func (h *priceHeap) Pop() interface{} {
- old := h.list
- n := len(old)
- x := old[n-1]
- old[n-1] = nil
- h.list = old[0 : n-1]
- return x
- }
- // txPricedList is a price-sorted heap to allow operating on transactions pool
- // contents in a price-incrementing way. It's built opon the all transactions
- // in txpool but only interested in the remote part. It means only remote transactions
- // will be considered for tracking, sorting, eviction, etc.
- //
- // Two heaps are used for sorting: the urgent heap (based on effective tip in the next
- // block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for
- // eviction. Transactions evicted from the urgent heap are first demoted into the floating heap.
- // In some cases (during a congestion, when blocks are full) the urgent heap can provide
- // better candidates for inclusion while in other cases (at the top of the baseFee peak)
- // the floating heap is better. When baseFee is decreasing they behave similarly.
- type txPricedList struct {
- // Number of stale price points to (re-heap trigger).
- // This field is accessed atomically, and must be the first field
- // to ensure it has correct alignment for atomic.AddInt64.
- // See https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
- stales int64
- all *txLookup // Pointer to the map of all transactions
- urgent, floating priceHeap // Heaps of prices of all the stored **remote** transactions
- reheapMu sync.Mutex // Mutex asserts that only one routine is reheaping the list
- }
- const (
- // urgentRatio : floatingRatio is the capacity ratio of the two queues
- urgentRatio = 4
- floatingRatio = 1
- )
- // newTxPricedList creates a new price-sorted transaction heap.
- func newTxPricedList(all *txLookup) *txPricedList {
- return &txPricedList{
- all: all,
- }
- }
- // Put inserts a new transaction into the heap.
- func (l *txPricedList) Put(tx *types.Transaction, local bool) {
- if local {
- return
- }
- // Insert every new transaction to the urgent heap first; Discard will balance the heaps
- heap.Push(&l.urgent, tx)
- }
- // Removed notifies the prices transaction list that an old transaction dropped
- // from the pool. The list will just keep a counter of stale objects and update
- // the heap if a large enough ratio of transactions go stale.
- func (l *txPricedList) Removed(count int) {
- // Bump the stale counter, but exit if still too low (< 25%)
- stales := atomic.AddInt64(&l.stales, int64(count))
- if int(stales) <= (len(l.urgent.list)+len(l.floating.list))/4 {
- return
- }
- // Seems we've reached a critical number of stale transactions, reheap
- l.Reheap()
- }
- // Underpriced checks whether a transaction is cheaper than (or as cheap as) the
- // lowest priced (remote) transaction currently being tracked.
- func (l *txPricedList) Underpriced(tx *types.Transaction) bool {
- // Note: with two queues, being underpriced is defined as being worse than the worst item
- // in all non-empty queues if there is any. If both queues are empty then nothing is underpriced.
- return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) &&
- (l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) &&
- (len(l.urgent.list) != 0 || len(l.floating.list) != 0)
- }
- // underpricedFor checks whether a transaction is cheaper than (or as cheap as) the
- // lowest priced (remote) transaction in the given heap.
- func (l *txPricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool {
- // Discard stale price points if found at the heap start
- for len(h.list) > 0 {
- head := h.list[0]
- if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
- atomic.AddInt64(&l.stales, -1)
- heap.Pop(h)
- continue
- }
- break
- }
- // Check if the transaction is underpriced or not
- if len(h.list) == 0 {
- return false // There is no remote transaction at all.
- }
- // If the remote transaction is even cheaper than the
- // cheapest one tracked locally, reject it.
- return h.cmp(h.list[0], tx) >= 0
- }
- // Discard finds a number of most underpriced transactions, removes them from the
- // priced list and returns them for further removal from the entire pool.
- //
- // Note local transaction won't be considered for eviction.
- func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) {
- drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
- for slots > 0 {
- if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 {
- // Discard stale transactions if found during cleanup
- tx := heap.Pop(&l.urgent).(*types.Transaction)
- if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
- atomic.AddInt64(&l.stales, -1)
- continue
- }
- // Non stale transaction found, move to floating heap
- heap.Push(&l.floating, tx)
- } else {
- if len(l.floating.list) == 0 {
- // Stop if both heaps are empty
- break
- }
- // Discard stale transactions if found during cleanup
- tx := heap.Pop(&l.floating).(*types.Transaction)
- if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
- atomic.AddInt64(&l.stales, -1)
- continue
- }
- // Non stale transaction found, discard it
- drop = append(drop, tx)
- slots -= numSlots(tx)
- }
- }
- // If we still can't make enough room for the new transaction
- if slots > 0 && !force {
- for _, tx := range drop {
- heap.Push(&l.urgent, tx)
- }
- return nil, false
- }
- return drop, true
- }
- // Reheap forcibly rebuilds the heap based on the current remote transaction set.
- func (l *txPricedList) Reheap() {
- l.reheapMu.Lock()
- defer l.reheapMu.Unlock()
- start := time.Now()
- atomic.StoreInt64(&l.stales, 0)
- l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount())
- l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
- l.urgent.list = append(l.urgent.list, tx)
- return true
- }, false, true) // Only iterate remotes
- heap.Init(&l.urgent)
- // balance out the two heaps by moving the worse half of transactions into the
- // floating heap
- // Note: Discard would also do this before the first eviction but Reheap can do
- // is more efficiently. Also, Underpriced would work suboptimally the first time
- // if the floating queue was empty.
- floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio)
- l.floating.list = make([]*types.Transaction, floatingCount)
- for i := 0; i < floatingCount; i++ {
- l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction)
- }
- heap.Init(&l.floating)
- reheapTimer.Update(time.Since(start))
- }
- // SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not
- // necessary to call right before SetBaseFee when processing a new block.
- func (l *txPricedList) SetBaseFee(baseFee *big.Int) {
- l.urgent.baseFee = baseFee
- l.Reheap()
- }
|