| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- import numpy as np
- import matplotlib.pyplot as plt
- # 设置参数
- T = 1.0 # 终止时间
- N = 1000 # 时间步数
- dt = T / N # 每一步的时间间隔
- sigma = 0.2 # 波动率
- S0 = 100 # 初始价格
- A = 1.0 # 基准强度
- k = 0.5 # 衰减系数
- delta = 1.0 # 价格距离
- # 生成布朗运动路径
- t = np.linspace(0, T, N+1) # 时间点
- W = np.random.randn(N) # 生成N个标准正态分布的随机数
- W = np.insert(W, 0, 0) # 将初始值0插入到W的开头
- W = np.cumsum(W) * np.sqrt(dt) # 计算布朗运动的累加和并乘以sqrt(dt)
- # 计算参考价格路径
- S = S0 + sigma * W
- # 计算捕获流强度
- Lambda_plus = A * np.exp(-k * delta + k * (S - S[0]))
- Lambda_minus = A * np.exp(-k * delta - k * (S - S[0]))
- # 绘制参考价格和捕获流强度
- fig, ax1 = plt.subplots(figsize=(10, 6))
- # 绘制参考价格
- ax1.set_xlabel('Time')
- ax1.set_ylabel('Reference Price', color='tab:blue')
- ax1.plot(t, S, label='Reference Price', color='tab:blue')
- ax1.tick_params(axis='y', labelcolor='tab:blue')
- # 创建第二个y轴
- ax2 = ax1.twinx()
- ax2.set_ylabel('Intensity', color='tab:red')
- ax2.plot(t, Lambda_plus, label=r'$\Lambda^+(\delta, t, t + \Delta T)$', color='tab:red')
- ax2.plot(t, Lambda_minus, label=r'$\Lambda^-(\delta, t, t + \Delta T)$', color='tab:green')
- ax2.tick_params(axis='y', labelcolor='tab:red')
- # 设置图例
- fig.tight_layout()
- plt.title('Reference Price and Captured Flow Intensities')
- fig.legend(loc='upper left', bbox_to_anchor=(0.1,0.9))
- plt.grid(True)
- plt.show()
|