|
|
@@ -20,8 +20,8 @@ trade_snapshots = deque(maxlen=6000) # 存储过去6000个成交数
|
|
|
stop_event = threading.Event()
|
|
|
|
|
|
# 初始参数
|
|
|
-k_initial = 10
|
|
|
-A_initial = 100
|
|
|
+k_initial = 6
|
|
|
+A_initial = 140
|
|
|
|
|
|
# 定义参数范围
|
|
|
bounds = [(10, 1000.0), # A 的范围
|
|
|
@@ -149,8 +149,8 @@ def process_depth_data():
|
|
|
global order_book_snapshots, trade_snapshots, spread_delta_snapshots
|
|
|
global k_initial, A_initial, S0
|
|
|
|
|
|
- # 数据预热,至少10条深度数据以及100条成交数据才能用于计算
|
|
|
- if len(order_book_snapshots) < 10 or len(trade_snapshots) < 100:
|
|
|
+ # 数据预热,至少3条深度数据以及10条成交数据才能用于计算
|
|
|
+ if len(order_book_snapshots) < 3 or len(trade_snapshots) < 10:
|
|
|
return
|
|
|
|
|
|
S_values = [((snapshot['bids'][0][0] + snapshot['asks'][0][0]) / 2) for snapshot in order_book_snapshots]
|
|
|
@@ -193,8 +193,8 @@ def process_depth_data():
|
|
|
if result.success:
|
|
|
A_initial, k_initial = result.x
|
|
|
|
|
|
- logger.info(f"Optimal A: {A_initial}, Optimal k: {k_initial}")
|
|
|
- else:
|
|
|
- logger.error("Optimization failed")
|
|
|
+ logger.info(f"Optimal k: {k_initial}, delta_max: {delta_max}")
|
|
|
+ # else:
|
|
|
+ # logger.error("Optimization failed")
|
|
|
|
|
|
# logger.info("log(λ(δ)): {}, log(∫ φ(k, ξ) dξ): {}".format(log_lambda_hat_value, log_integral_phi_value))
|