| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069 |
- // Copyright 2015 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package trie
- import (
- "bytes"
- crand "crypto/rand"
- "encoding/binary"
- mrand "math/rand"
- "sort"
- "testing"
- "time"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/ethdb/memorydb"
- )
- func init() {
- mrand.Seed(time.Now().Unix())
- }
- // makeProvers creates Merkle trie provers based on different implementations to
- // test all variations.
- func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
- var provers []func(key []byte) *memorydb.Database
- // Create a direct trie based Merkle prover
- provers = append(provers, func(key []byte) *memorydb.Database {
- proof := memorydb.New()
- trie.Prove(key, 0, proof)
- return proof
- })
- // Create a leaf iterator based Merkle prover
- provers = append(provers, func(key []byte) *memorydb.Database {
- proof := memorydb.New()
- if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
- for _, p := range it.Prove() {
- proof.Put(crypto.Keccak256(p), p)
- }
- }
- return proof
- })
- return provers
- }
- func TestProof(t *testing.T) {
- trie, vals := randomTrie(500)
- root := trie.Hash()
- for i, prover := range makeProvers(trie) {
- for _, kv := range vals {
- proof := prover(kv.k)
- if proof == nil {
- t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
- }
- val, err := VerifyProof(root, kv.k, proof)
- if err != nil {
- t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
- }
- if !bytes.Equal(val, kv.v) {
- t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
- }
- }
- }
- }
- func TestOneElementProof(t *testing.T) {
- trie := new(Trie)
- updateString(trie, "k", "v")
- for i, prover := range makeProvers(trie) {
- proof := prover([]byte("k"))
- if proof == nil {
- t.Fatalf("prover %d: nil proof", i)
- }
- if proof.Len() != 1 {
- t.Errorf("prover %d: proof should have one element", i)
- }
- val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
- if err != nil {
- t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
- }
- if !bytes.Equal(val, []byte("v")) {
- t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
- }
- }
- }
- func TestBadProof(t *testing.T) {
- trie, vals := randomTrie(800)
- root := trie.Hash()
- for i, prover := range makeProvers(trie) {
- for _, kv := range vals {
- proof := prover(kv.k)
- if proof == nil {
- t.Fatalf("prover %d: nil proof", i)
- }
- it := proof.NewIterator(nil, nil)
- for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
- it.Next()
- }
- key := it.Key()
- val, _ := proof.Get(key)
- proof.Delete(key)
- it.Release()
- mutateByte(val)
- proof.Put(crypto.Keccak256(val), val)
- if _, err := VerifyProof(root, kv.k, proof); err == nil {
- t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
- }
- }
- }
- }
- // Tests that missing keys can also be proven. The test explicitly uses a single
- // entry trie and checks for missing keys both before and after the single entry.
- func TestMissingKeyProof(t *testing.T) {
- trie := new(Trie)
- updateString(trie, "k", "v")
- for i, key := range []string{"a", "j", "l", "z"} {
- proof := memorydb.New()
- trie.Prove([]byte(key), 0, proof)
- if proof.Len() != 1 {
- t.Errorf("test %d: proof should have one element", i)
- }
- val, err := VerifyProof(trie.Hash(), []byte(key), proof)
- if err != nil {
- t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
- }
- if val != nil {
- t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
- }
- }
- }
- type entrySlice []*kv
- func (p entrySlice) Len() int { return len(p) }
- func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
- func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
- // TestRangeProof tests normal range proof with both edge proofs
- // as the existent proof. The test cases are generated randomly.
- func TestRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- for i := 0; i < 500; i++ {
- start := mrand.Intn(len(entries))
- end := mrand.Intn(len(entries)-start) + start + 1
- proof := memorydb.New()
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
- if err != nil {
- t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
- }
- }
- }
- // TestRangeProof tests normal range proof with two non-existent proofs.
- // The test cases are generated randomly.
- func TestRangeProofWithNonExistentProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- for i := 0; i < 500; i++ {
- start := mrand.Intn(len(entries))
- end := mrand.Intn(len(entries)-start) + start + 1
- proof := memorydb.New()
- // Short circuit if the decreased key is same with the previous key
- first := decreseKey(common.CopyBytes(entries[start].k))
- if start != 0 && bytes.Equal(first, entries[start-1].k) {
- continue
- }
- // Short circuit if the decreased key is underflow
- if bytes.Compare(first, entries[start].k) > 0 {
- continue
- }
- // Short circuit if the increased key is same with the next key
- last := increseKey(common.CopyBytes(entries[end-1].k))
- if end != len(entries) && bytes.Equal(last, entries[end].k) {
- continue
- }
- // Short circuit if the increased key is overflow
- if bytes.Compare(last, entries[end-1].k) < 0 {
- continue
- }
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
- if err != nil {
- t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
- }
- }
- // Special case, two edge proofs for two edge key.
- proof := memorydb.New()
- first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
- last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var k [][]byte
- var v [][]byte
- for i := 0; i < len(entries); i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
- if err != nil {
- t.Fatal("Failed to verify whole rang with non-existent edges")
- }
- }
- // TestRangeProofWithInvalidNonExistentProof tests such scenarios:
- // - There exists a gap between the first element and the left edge proof
- // - There exists a gap between the last element and the right edge proof
- func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- // Case 1
- start, end := 100, 200
- first := decreseKey(common.CopyBytes(entries[start].k))
- proof := memorydb.New()
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- start = 105 // Gap created
- k := make([][]byte, 0)
- v := make([][]byte, 0)
- for i := start; i < end; i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
- if err == nil {
- t.Fatalf("Expected to detect the error, got nil")
- }
- // Case 2
- start, end = 100, 200
- last := increseKey(common.CopyBytes(entries[end-1].k))
- proof = memorydb.New()
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- end = 195 // Capped slice
- k = make([][]byte, 0)
- v = make([][]byte, 0)
- for i := start; i < end; i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- _, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
- if err == nil {
- t.Fatalf("Expected to detect the error, got nil")
- }
- }
- // TestOneElementRangeProof tests the proof with only one
- // element. The first edge proof can be existent one or
- // non-existent one.
- func TestOneElementRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- // One element with existent edge proof, both edge proofs
- // point to the SAME key.
- start := 1000
- proof := memorydb.New()
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- _, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // One element with left non-existent edge proof
- start = 1000
- first := decreseKey(common.CopyBytes(entries[start].k))
- proof = memorydb.New()
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // One element with right non-existent edge proof
- start = 1000
- last := increseKey(common.CopyBytes(entries[start].k))
- proof = memorydb.New()
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // One element with two non-existent edge proofs
- start = 1000
- first, last = decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[start].k))
- proof = memorydb.New()
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // Test the mini trie with only a single element.
- tinyTrie := new(Trie)
- entry := &kv{randBytes(32), randBytes(20), false}
- tinyTrie.Update(entry.k, entry.v)
- first = common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
- last = entry.k
- proof = memorydb.New()
- if err := tinyTrie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := tinyTrie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- // TestAllElementsProof tests the range proof with all elements.
- // The edge proofs can be nil.
- func TestAllElementsProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- var k [][]byte
- var v [][]byte
- for i := 0; i < len(entries); i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // With edge proofs, it should still work.
- proof := memorydb.New()
- if err := trie.Prove(entries[0].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // Even with non-existent edge proofs, it should still work.
- proof = memorydb.New()
- first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
- last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- // TestSingleSideRangeProof tests the range starts from zero.
- func TestSingleSideRangeProof(t *testing.T) {
- for i := 0; i < 64; i++ {
- trie := new(Trie)
- var entries entrySlice
- for i := 0; i < 4096; i++ {
- value := &kv{randBytes(32), randBytes(20), false}
- trie.Update(value.k, value.v)
- entries = append(entries, value)
- }
- sort.Sort(entries)
- var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
- for _, pos := range cases {
- proof := memorydb.New()
- if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- k := make([][]byte, 0)
- v := make([][]byte, 0)
- for i := 0; i <= pos; i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- }
- }
- // TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff.
- func TestReverseSingleSideRangeProof(t *testing.T) {
- for i := 0; i < 64; i++ {
- trie := new(Trie)
- var entries entrySlice
- for i := 0; i < 4096; i++ {
- value := &kv{randBytes(32), randBytes(20), false}
- trie.Update(value.k, value.v)
- entries = append(entries, value)
- }
- sort.Sort(entries)
- var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
- for _, pos := range cases {
- proof := memorydb.New()
- if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
- if err := trie.Prove(last.Bytes(), 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- k := make([][]byte, 0)
- v := make([][]byte, 0)
- for i := pos; i < len(entries); i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- }
- }
- // TestBadRangeProof tests a few cases which the proof is wrong.
- // The prover is expected to detect the error.
- func TestBadRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- for i := 0; i < 500; i++ {
- start := mrand.Intn(len(entries))
- end := mrand.Intn(len(entries)-start) + start + 1
- proof := memorydb.New()
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- var first, last = keys[0], keys[len(keys)-1]
- testcase := mrand.Intn(6)
- var index int
- switch testcase {
- case 0:
- // Modified key
- index = mrand.Intn(end - start)
- keys[index] = randBytes(32) // In theory it can't be same
- case 1:
- // Modified val
- index = mrand.Intn(end - start)
- vals[index] = randBytes(20) // In theory it can't be same
- case 2:
- // Gapped entry slice
- index = mrand.Intn(end - start)
- if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
- continue
- }
- keys = append(keys[:index], keys[index+1:]...)
- vals = append(vals[:index], vals[index+1:]...)
- case 3:
- // Out of order
- index1 := mrand.Intn(end - start)
- index2 := mrand.Intn(end - start)
- if index1 == index2 {
- continue
- }
- keys[index1], keys[index2] = keys[index2], keys[index1]
- vals[index1], vals[index2] = vals[index2], vals[index1]
- case 4:
- // Set random key to nil, do nothing
- index = mrand.Intn(end - start)
- keys[index] = nil
- case 5:
- // Set random value to nil, deletion
- index = mrand.Intn(end - start)
- vals[index] = nil
- }
- _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
- if err == nil {
- t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
- }
- }
- }
- // TestGappedRangeProof focuses on the small trie with embedded nodes.
- // If the gapped node is embedded in the trie, it should be detected too.
- func TestGappedRangeProof(t *testing.T) {
- trie := new(Trie)
- var entries []*kv // Sorted entries
- for i := byte(0); i < 10; i++ {
- value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
- trie.Update(value.k, value.v)
- entries = append(entries, value)
- }
- first, last := 2, 8
- proof := memorydb.New()
- if err := trie.Prove(entries[first].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[last-1].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := first; i < last; i++ {
- if i == (first+last)/2 {
- continue
- }
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
- if err == nil {
- t.Fatal("expect error, got nil")
- }
- }
- // TestSameSideProofs tests the element is not in the range covered by proofs
- func TestSameSideProofs(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- pos := 1000
- first := decreseKey(common.CopyBytes(entries[pos].k))
- first = decreseKey(first)
- last := decreseKey(common.CopyBytes(entries[pos].k))
- proof := memorydb.New()
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
- if err == nil {
- t.Fatalf("Expected error, got nil")
- }
- first = increseKey(common.CopyBytes(entries[pos].k))
- last = increseKey(common.CopyBytes(entries[pos].k))
- last = increseKey(last)
- proof = memorydb.New()
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
- if err == nil {
- t.Fatalf("Expected error, got nil")
- }
- }
- func TestHasRightElement(t *testing.T) {
- trie := new(Trie)
- var entries entrySlice
- for i := 0; i < 4096; i++ {
- value := &kv{randBytes(32), randBytes(20), false}
- trie.Update(value.k, value.v)
- entries = append(entries, value)
- }
- sort.Sort(entries)
- var cases = []struct {
- start int
- end int
- hasMore bool
- }{
- {-1, 1, true}, // single element with non-existent left proof
- {0, 1, true}, // single element with existent left proof
- {0, 10, true},
- {50, 100, true},
- {50, len(entries), false}, // No more element expected
- {len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key)
- {len(entries) - 1, -1, false}, // Single last element with non-existent right proof
- {0, len(entries), false}, // The whole set with existent left proof
- {-1, len(entries), false}, // The whole set with non-existent left proof
- {-1, -1, false}, // The whole set with non-existent left/right proof
- }
- for _, c := range cases {
- var (
- firstKey []byte
- lastKey []byte
- start = c.start
- end = c.end
- proof = memorydb.New()
- )
- if c.start == -1 {
- firstKey, start = common.Hash{}.Bytes(), 0
- if err := trie.Prove(firstKey, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- } else {
- firstKey = entries[c.start].k
- if err := trie.Prove(entries[c.start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- }
- if c.end == -1 {
- lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries)
- if err := trie.Prove(lastKey, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- } else {
- lastKey = entries[c.end-1].k
- if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- }
- k := make([][]byte, 0)
- v := make([][]byte, 0)
- for i := start; i < end; i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- if hasMore != c.hasMore {
- t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
- }
- }
- }
- // TestEmptyRangeProof tests the range proof with "no" element.
- // The first edge proof must be a non-existent proof.
- func TestEmptyRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- var cases = []struct {
- pos int
- err bool
- }{
- {len(entries) - 1, false},
- {500, true},
- }
- for _, c := range cases {
- proof := memorydb.New()
- first := increseKey(common.CopyBytes(entries[c.pos].k))
- if err := trie.Prove(first, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- _, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
- if c.err && err == nil {
- t.Fatalf("Expected error, got nil")
- }
- if !c.err && err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- }
- // TestBloatedProof tests a malicious proof, where the proof is more or less the
- // whole trie. Previously we didn't accept such packets, but the new APIs do, so
- // lets leave this test as a bit weird, but present.
- func TestBloatedProof(t *testing.T) {
- // Use a small trie
- trie, kvs := nonRandomTrie(100)
- var entries entrySlice
- for _, kv := range kvs {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- var keys [][]byte
- var vals [][]byte
- proof := memorydb.New()
- // In the 'malicious' case, we add proofs for every single item
- // (but only one key/value pair used as leaf)
- for i, entry := range entries {
- trie.Prove(entry.k, 0, proof)
- if i == 50 {
- keys = append(keys, entry.k)
- vals = append(vals, entry.v)
- }
- }
- // For reference, we use the same function, but _only_ prove the first
- // and last element
- want := memorydb.New()
- trie.Prove(keys[0], 0, want)
- trie.Prove(keys[len(keys)-1], 0, want)
- if _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof); err != nil {
- t.Fatalf("expected bloated proof to succeed, got %v", err)
- }
- }
- // TestEmptyValueRangeProof tests normal range proof with both edge proofs
- // as the existent proof, but with an extra empty value included, which is a
- // noop technically, but practically should be rejected.
- func TestEmptyValueRangeProof(t *testing.T) {
- trie, values := randomTrie(512)
- var entries entrySlice
- for _, kv := range values {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- // Create a new entry with a slightly modified key
- mid := len(entries) / 2
- key := common.CopyBytes(entries[mid-1].k)
- for n := len(key) - 1; n >= 0; n-- {
- if key[n] < 0xff {
- key[n]++
- break
- }
- }
- noop := &kv{key, []byte{}, false}
- entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
- start, end := 1, len(entries)-1
- proof := memorydb.New()
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
- if err == nil {
- t.Fatalf("Expected failure on noop entry")
- }
- }
- // TestAllElementsEmptyValueRangeProof tests the range proof with all elements,
- // but with an extra empty value included, which is a noop technically, but
- // practically should be rejected.
- func TestAllElementsEmptyValueRangeProof(t *testing.T) {
- trie, values := randomTrie(512)
- var entries entrySlice
- for _, kv := range values {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- // Create a new entry with a slightly modified key
- mid := len(entries) / 2
- key := common.CopyBytes(entries[mid-1].k)
- for n := len(key) - 1; n >= 0; n-- {
- if key[n] < 0xff {
- key[n]++
- break
- }
- }
- noop := &kv{key, []byte{}, false}
- entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
- var keys [][]byte
- var vals [][]byte
- for i := 0; i < len(entries); i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- _, err := VerifyRangeProof(trie.Hash(), nil, nil, keys, vals, nil)
- if err == nil {
- t.Fatalf("Expected failure on noop entry")
- }
- }
- // mutateByte changes one byte in b.
- func mutateByte(b []byte) {
- for r := mrand.Intn(len(b)); ; {
- new := byte(mrand.Intn(255))
- if new != b[r] {
- b[r] = new
- break
- }
- }
- }
- func increseKey(key []byte) []byte {
- for i := len(key) - 1; i >= 0; i-- {
- key[i]++
- if key[i] != 0x0 {
- break
- }
- }
- return key
- }
- func decreseKey(key []byte) []byte {
- for i := len(key) - 1; i >= 0; i-- {
- key[i]--
- if key[i] != 0xff {
- break
- }
- }
- return key
- }
- func BenchmarkProve(b *testing.B) {
- trie, vals := randomTrie(100)
- var keys []string
- for k := range vals {
- keys = append(keys, k)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- kv := vals[keys[i%len(keys)]]
- proofs := memorydb.New()
- if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
- b.Fatalf("zero length proof for %x", kv.k)
- }
- }
- }
- func BenchmarkVerifyProof(b *testing.B) {
- trie, vals := randomTrie(100)
- root := trie.Hash()
- var keys []string
- var proofs []*memorydb.Database
- for k := range vals {
- keys = append(keys, k)
- proof := memorydb.New()
- trie.Prove([]byte(k), 0, proof)
- proofs = append(proofs, proof)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- im := i % len(keys)
- if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
- b.Fatalf("key %x: %v", keys[im], err)
- }
- }
- }
- func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
- func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
- func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
- func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
- func benchmarkVerifyRangeProof(b *testing.B, size int) {
- trie, vals := randomTrie(8192)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- start := 2
- end := start + size
- proof := memorydb.New()
- if err := trie.Prove(entries[start].k, 0, proof); err != nil {
- b.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
- b.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var values [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- values = append(values, entries[i].v)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
- if err != nil {
- b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
- }
- }
- }
- func BenchmarkVerifyRangeNoProof10(b *testing.B) { benchmarkVerifyRangeNoProof(b, 100) }
- func BenchmarkVerifyRangeNoProof500(b *testing.B) { benchmarkVerifyRangeNoProof(b, 500) }
- func BenchmarkVerifyRangeNoProof1000(b *testing.B) { benchmarkVerifyRangeNoProof(b, 1000) }
- func benchmarkVerifyRangeNoProof(b *testing.B, size int) {
- trie, vals := randomTrie(size)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- var keys [][]byte
- var values [][]byte
- for _, entry := range entries {
- keys = append(keys, entry.k)
- values = append(values, entry.v)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil)
- if err != nil {
- b.Fatalf("Expected no error, got %v", err)
- }
- }
- }
- func randomTrie(n int) (*Trie, map[string]*kv) {
- trie := new(Trie)
- vals := make(map[string]*kv)
- for i := byte(0); i < 100; i++ {
- value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
- value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
- trie.Update(value.k, value.v)
- trie.Update(value2.k, value2.v)
- vals[string(value.k)] = value
- vals[string(value2.k)] = value2
- }
- for i := 0; i < n; i++ {
- value := &kv{randBytes(32), randBytes(20), false}
- trie.Update(value.k, value.v)
- vals[string(value.k)] = value
- }
- return trie, vals
- }
- func randBytes(n int) []byte {
- r := make([]byte, n)
- crand.Read(r)
- return r
- }
- func nonRandomTrie(n int) (*Trie, map[string]*kv) {
- trie := new(Trie)
- vals := make(map[string]*kv)
- max := uint64(0xffffffffffffffff)
- for i := uint64(0); i < uint64(n); i++ {
- value := make([]byte, 32)
- key := make([]byte, 32)
- binary.LittleEndian.PutUint64(key, i)
- binary.LittleEndian.PutUint64(value, i-max)
- //value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
- elem := &kv{key, value, false}
- trie.Update(elem.k, elem.v)
- vals[string(elem.k)] = elem
- }
- return trie, vals
- }
|