| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Copyright 2011 ThePiachu. All rights reserved.
- // Copyright 2013-2014 The btcsuite developers
- // Use of this source code is governed by an ISC
- // license that can be found in the LICENSE file.
- package btcec
- // References:
- // [SECG]: Recommended Elliptic Curve Domain Parameters
- // http://www.secg.org/sec2-v2.pdf
- //
- // [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
- // This package operates, internally, on Jacobian coordinates. For a given
- // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
- // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
- // calculation can be performed within the transform (as in ScalarMult and
- // ScalarBaseMult). But even for Add and Double, it's faster to apply and
- // reverse the transform than to operate in affine coordinates.
- import (
- "crypto/elliptic"
- "math/big"
- "sync"
- )
- var (
- // fieldOne is simply the integer 1 in field representation. It is
- // used to avoid needing to create it multiple times during the internal
- // arithmetic.
- fieldOne = new(fieldVal).SetInt(1)
- )
- // KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
- // interface from crypto/elliptic.
- type KoblitzCurve struct {
- *elliptic.CurveParams
- q *big.Int
- H int // cofactor of the curve.
- halfOrder *big.Int // half the order N
- // byteSize is simply the bit size / 8 and is provided for convenience
- // since it is calculated repeatedly.
- byteSize int
- // bytePoints
- bytePoints *[32][256][3]fieldVal
- // The next 6 values are used specifically for endomorphism
- // optimizations in ScalarMult.
- // lambda must fulfill lambda^3 = 1 mod N where N is the order of G.
- lambda *big.Int
- // beta must fulfill beta^3 = 1 mod P where P is the prime field of the
- // curve.
- beta *fieldVal
- // See the EndomorphismVectors in gensecp256k1.go to see how these are
- // derived.
- a1 *big.Int
- b1 *big.Int
- a2 *big.Int
- b2 *big.Int
- }
- // Params returns the parameters for the curve.
- func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
- return curve.CurveParams
- }
- // bigAffineToField takes an affine point (x, y) as big integers and converts
- // it to an affine point as field values.
- func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
- x3, y3 := new(fieldVal), new(fieldVal)
- x3.SetByteSlice(x.Bytes())
- y3.SetByteSlice(y.Bytes())
- return x3, y3
- }
- // fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
- // converts it to an affine point as big integers.
- func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
- // Inversions are expensive and both point addition and point doubling
- // are faster when working with points that have a z value of one. So,
- // if the point needs to be converted to affine, go ahead and normalize
- // the point itself at the same time as the calculation is the same.
- var zInv, tempZ fieldVal
- zInv.Set(z).Inverse() // zInv = Z^-1
- tempZ.SquareVal(&zInv) // tempZ = Z^-2
- x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
- y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
- z.SetInt(1) // Z = 1 (mag: 1)
- // Normalize the x and y values.
- x.Normalize()
- y.Normalize()
- // Convert the field values for the now affine point to big.Ints.
- x3, y3 := new(big.Int), new(big.Int)
- x3.SetBytes(x.Bytes()[:])
- y3.SetBytes(y.Bytes()[:])
- return x3, y3
- }
- // IsOnCurve returns boolean if the point (x,y) is on the curve.
- // Part of the elliptic.Curve interface. This function differs from the
- // crypto/elliptic algorithm since a = 0 not -3.
- func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
- // Convert big ints to field values for faster arithmetic.
- fx, fy := curve.bigAffineToField(x, y)
- // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
- y2 := new(fieldVal).SquareVal(fy).Normalize()
- result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
- return y2.Equals(result)
- }
- // addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
- // z values of 1 and stores the result in (x3, y3, z3). That is to say
- // (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
- // the generic add routine since less arithmetic is needed due to the ability to
- // avoid the z value multiplications.
- func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
- // To compute the point addition efficiently, this implementation splits
- // the equation into intermediate elements which are used to minimize
- // the number of field multiplications using the method shown at:
- // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
- //
- // In particular it performs the calculations using the following:
- // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
- // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
- //
- // This results in a cost of 4 field multiplications, 2 field squarings,
- // 6 field additions, and 5 integer multiplications.
- // When the x coordinates are the same for two points on the curve, the
- // y coordinates either must be the same, in which case it is point
- // doubling, or they are opposite and the result is the point at
- // infinity per the group law for elliptic curve cryptography.
- x1.Normalize()
- y1.Normalize()
- x2.Normalize()
- y2.Normalize()
- if x1.Equals(x2) {
- if y1.Equals(y2) {
- // Since x1 == x2 and y1 == y2, point doubling must be
- // done, otherwise the addition would end up dividing
- // by zero.
- curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
- return
- }
- // Since x1 == x2 and y1 == -y2, the sum is the point at
- // infinity per the group law.
- x3.SetInt(0)
- y3.SetInt(0)
- z3.SetInt(0)
- return
- }
- // Calculate X3, Y3, and Z3 according to the intermediate elements
- // breakdown above.
- var h, i, j, r, v fieldVal
- var negJ, neg2V, negX3 fieldVal
- h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
- i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
- j.Mul2(&h, &i) // J = H*I (mag: 1)
- r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
- v.Mul2(x1, &i) // V = X1*I (mag: 1)
- negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
- neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
- x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
- negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
- j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
- y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
- z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
- // Normalize the resulting field values to a magnitude of 1 as needed.
- x3.Normalize()
- y3.Normalize()
- z3.Normalize()
- }
- // addZ1EqualsZ2 adds two Jacobian points that are already known to have the
- // same z value and stores the result in (x3, y3, z3). That is to say
- // (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
- // the generic add routine since less arithmetic is needed due to the known
- // equivalence.
- func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
- // To compute the point addition efficiently, this implementation splits
- // the equation into intermediate elements which are used to minimize
- // the number of field multiplications using a slightly modified version
- // of the method shown at:
- // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
- //
- // In particular it performs the calculations using the following:
- // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
- // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
- //
- // This results in a cost of 5 field multiplications, 2 field squarings,
- // 9 field additions, and 0 integer multiplications.
- // When the x coordinates are the same for two points on the curve, the
- // y coordinates either must be the same, in which case it is point
- // doubling, or they are opposite and the result is the point at
- // infinity per the group law for elliptic curve cryptography.
- x1.Normalize()
- y1.Normalize()
- x2.Normalize()
- y2.Normalize()
- if x1.Equals(x2) {
- if y1.Equals(y2) {
- // Since x1 == x2 and y1 == y2, point doubling must be
- // done, otherwise the addition would end up dividing
- // by zero.
- curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
- return
- }
- // Since x1 == x2 and y1 == -y2, the sum is the point at
- // infinity per the group law.
- x3.SetInt(0)
- y3.SetInt(0)
- z3.SetInt(0)
- return
- }
- // Calculate X3, Y3, and Z3 according to the intermediate elements
- // breakdown above.
- var a, b, c, d, e, f fieldVal
- var negX1, negY1, negE, negX3 fieldVal
- negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
- negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
- a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
- b.SquareVal(&a) // B = A^2 (mag: 1)
- c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
- d.SquareVal(&c) // D = C^2 (mag: 1)
- e.Mul2(x1, &b) // E = X1*B (mag: 1)
- negE.Set(&e).Negate(1) // negE = -E (mag: 2)
- f.Mul2(x2, &b) // F = X2*B (mag: 1)
- x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
- negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
- y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
- y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
- z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
- // Normalize the resulting field values to a magnitude of 1 as needed.
- x3.Normalize()
- y3.Normalize()
- }
- // addZ2EqualsOne adds two Jacobian points when the second point is already
- // known to have a z value of 1 (and the z value for the first point is not 1)
- // and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
- // (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
- // add routine since less arithmetic is needed due to the ability to avoid
- // multiplications by the second point's z value.
- func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
- // To compute the point addition efficiently, this implementation splits
- // the equation into intermediate elements which are used to minimize
- // the number of field multiplications using the method shown at:
- // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
- //
- // In particular it performs the calculations using the following:
- // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
- // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
- // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
- //
- // This results in a cost of 7 field multiplications, 4 field squarings,
- // 9 field additions, and 4 integer multiplications.
- // When the x coordinates are the same for two points on the curve, the
- // y coordinates either must be the same, in which case it is point
- // doubling, or they are opposite and the result is the point at
- // infinity per the group law for elliptic curve cryptography. Since
- // any number of Jacobian coordinates can represent the same affine
- // point, the x and y values need to be converted to like terms. Due to
- // the assumption made for this function that the second point has a z
- // value of 1 (z2=1), the first point is already "converted".
- var z1z1, u2, s2 fieldVal
- x1.Normalize()
- y1.Normalize()
- z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
- u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
- s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
- if x1.Equals(&u2) {
- if y1.Equals(&s2) {
- // Since x1 == x2 and y1 == y2, point doubling must be
- // done, otherwise the addition would end up dividing
- // by zero.
- curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
- return
- }
- // Since x1 == x2 and y1 == -y2, the sum is the point at
- // infinity per the group law.
- x3.SetInt(0)
- y3.SetInt(0)
- z3.SetInt(0)
- return
- }
- // Calculate X3, Y3, and Z3 according to the intermediate elements
- // breakdown above.
- var h, hh, i, j, r, rr, v fieldVal
- var negX1, negY1, negX3 fieldVal
- negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
- h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
- hh.SquareVal(&h) // HH = H^2 (mag: 1)
- i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
- j.Mul2(&h, &i) // J = H*I (mag: 1)
- negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
- r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
- rr.SquareVal(&r) // rr = r^2 (mag: 1)
- v.Mul2(x1, &i) // V = X1*I (mag: 1)
- x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
- x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
- negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
- y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
- y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
- z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
- z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
- // Normalize the resulting field values to a magnitude of 1 as needed.
- x3.Normalize()
- y3.Normalize()
- z3.Normalize()
- }
- // addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
- // assumptions about the z values of the two points and stores the result in
- // (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
- // is the slowest of the add routines due to requiring the most arithmetic.
- func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
- // To compute the point addition efficiently, this implementation splits
- // the equation into intermediate elements which are used to minimize
- // the number of field multiplications using the method shown at:
- // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
- //
- // In particular it performs the calculations using the following:
- // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
- // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
- // V = U1*I
- // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
- //
- // This results in a cost of 11 field multiplications, 5 field squarings,
- // 9 field additions, and 4 integer multiplications.
- // When the x coordinates are the same for two points on the curve, the
- // y coordinates either must be the same, in which case it is point
- // doubling, or they are opposite and the result is the point at
- // infinity. Since any number of Jacobian coordinates can represent the
- // same affine point, the x and y values need to be converted to like
- // terms.
- var z1z1, z2z2, u1, u2, s1, s2 fieldVal
- z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
- z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
- u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
- u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
- s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
- s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
- if u1.Equals(&u2) {
- if s1.Equals(&s2) {
- // Since x1 == x2 and y1 == y2, point doubling must be
- // done, otherwise the addition would end up dividing
- // by zero.
- curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
- return
- }
- // Since x1 == x2 and y1 == -y2, the sum is the point at
- // infinity per the group law.
- x3.SetInt(0)
- y3.SetInt(0)
- z3.SetInt(0)
- return
- }
- // Calculate X3, Y3, and Z3 according to the intermediate elements
- // breakdown above.
- var h, i, j, r, rr, v fieldVal
- var negU1, negS1, negX3 fieldVal
- negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
- h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
- i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
- j.Mul2(&h, &i) // J = H*I (mag: 1)
- negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
- r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
- rr.SquareVal(&r) // rr = r^2 (mag: 1)
- v.Mul2(&u1, &i) // V = U1*I (mag: 1)
- x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
- x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
- negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
- y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
- y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
- z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
- z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
- z3.Mul(&h) // Z3 = Z3*H (mag: 1)
- // Normalize the resulting field values to a magnitude of 1 as needed.
- x3.Normalize()
- y3.Normalize()
- }
- // addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
- // together and stores the result in (x3, y3, z3).
- func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
- // A point at infinity is the identity according to the group law for
- // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
- if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
- x3.Set(x2)
- y3.Set(y2)
- z3.Set(z2)
- return
- }
- if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
- x3.Set(x1)
- y3.Set(y1)
- z3.Set(z1)
- return
- }
- // Faster point addition can be achieved when certain assumptions are
- // met. For example, when both points have the same z value, arithmetic
- // on the z values can be avoided. This section thus checks for these
- // conditions and calls an appropriate add function which is accelerated
- // by using those assumptions.
- z1.Normalize()
- z2.Normalize()
- isZ1One := z1.Equals(fieldOne)
- isZ2One := z2.Equals(fieldOne)
- switch {
- case isZ1One && isZ2One:
- curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
- return
- case z1.Equals(z2):
- curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
- return
- case isZ2One:
- curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
- return
- }
- // None of the above assumptions are true, so fall back to generic
- // point addition.
- curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
- }
- // Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
- // interface.
- func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
- // A point at infinity is the identity according to the group law for
- // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
- if x1.Sign() == 0 && y1.Sign() == 0 {
- return x2, y2
- }
- if x2.Sign() == 0 && y2.Sign() == 0 {
- return x1, y1
- }
- // Convert the affine coordinates from big integers to field values
- // and do the point addition in Jacobian projective space.
- fx1, fy1 := curve.bigAffineToField(x1, y1)
- fx2, fy2 := curve.bigAffineToField(x2, y2)
- fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
- fOne := new(fieldVal).SetInt(1)
- curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
- // Convert the Jacobian coordinate field values back to affine big
- // integers.
- return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
- }
- // doubleZ1EqualsOne performs point doubling on the passed Jacobian point
- // when the point is already known to have a z value of 1 and stores
- // the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
- // performs faster point doubling than the generic routine since less arithmetic
- // is needed due to the ability to avoid multiplication by the z value.
- func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
- // This function uses the assumptions that z1 is 1, thus the point
- // doubling formulas reduce to:
- //
- // X3 = (3*X1^2)^2 - 8*X1*Y1^2
- // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
- // Z3 = 2*Y1
- //
- // To compute the above efficiently, this implementation splits the
- // equation into intermediate elements which are used to minimize the
- // number of field multiplications in favor of field squarings which
- // are roughly 35% faster than field multiplications with the current
- // implementation at the time this was written.
- //
- // This uses a slightly modified version of the method shown at:
- // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
- //
- // In particular it performs the calculations using the following:
- // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
- // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
- // Z3 = 2*Y1
- //
- // This results in a cost of 1 field multiplication, 5 field squarings,
- // 6 field additions, and 5 integer multiplications.
- var a, b, c, d, e, f fieldVal
- z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
- a.SquareVal(x1) // A = X1^2 (mag: 1)
- b.SquareVal(y1) // B = Y1^2 (mag: 1)
- c.SquareVal(&b) // C = B^2 (mag: 1)
- b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
- d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
- d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
- e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
- f.SquareVal(&e) // F = E^2 (mag: 1)
- x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
- x3.Add(&f) // X3 = F+X3 (mag: 18)
- f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
- y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
- y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
- // Normalize the field values back to a magnitude of 1.
- x3.Normalize()
- y3.Normalize()
- z3.Normalize()
- }
- // doubleGeneric performs point doubling on the passed Jacobian point without
- // any assumptions about the z value and stores the result in (x3, y3, z3).
- // That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
- // doubling routines due to requiring the most arithmetic.
- func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
- // Point doubling formula for Jacobian coordinates for the secp256k1
- // curve:
- // X3 = (3*X1^2)^2 - 8*X1*Y1^2
- // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
- // Z3 = 2*Y1*Z1
- //
- // To compute the above efficiently, this implementation splits the
- // equation into intermediate elements which are used to minimize the
- // number of field multiplications in favor of field squarings which
- // are roughly 35% faster than field multiplications with the current
- // implementation at the time this was written.
- //
- // This uses a slightly modified version of the method shown at:
- // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
- //
- // In particular it performs the calculations using the following:
- // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
- // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
- // Z3 = 2*Y1*Z1
- //
- // This results in a cost of 1 field multiplication, 5 field squarings,
- // 6 field additions, and 5 integer multiplications.
- var a, b, c, d, e, f fieldVal
- z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
- a.SquareVal(x1) // A = X1^2 (mag: 1)
- b.SquareVal(y1) // B = Y1^2 (mag: 1)
- c.SquareVal(&b) // C = B^2 (mag: 1)
- b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
- d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
- d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
- e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
- f.SquareVal(&e) // F = E^2 (mag: 1)
- x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
- x3.Add(&f) // X3 = F+X3 (mag: 18)
- f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
- y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
- y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
- // Normalize the field values back to a magnitude of 1.
- x3.Normalize()
- y3.Normalize()
- z3.Normalize()
- }
- // doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
- // result in (x3, y3, z3).
- func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
- // Doubling a point at infinity is still infinity.
- if y1.IsZero() || z1.IsZero() {
- x3.SetInt(0)
- y3.SetInt(0)
- z3.SetInt(0)
- return
- }
- // Slightly faster point doubling can be achieved when the z value is 1
- // by avoiding the multiplication on the z value. This section calls
- // a point doubling function which is accelerated by using that
- // assumption when possible.
- if z1.Normalize().Equals(fieldOne) {
- curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
- return
- }
- // Fall back to generic point doubling which works with arbitrary z
- // values.
- curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
- }
- // Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
- func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
- if y1.Sign() == 0 {
- return new(big.Int), new(big.Int)
- }
- // Convert the affine coordinates from big integers to field values
- // and do the point doubling in Jacobian projective space.
- fx1, fy1 := curve.bigAffineToField(x1, y1)
- fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
- fOne := new(fieldVal).SetInt(1)
- curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
- // Convert the Jacobian coordinate field values back to affine big
- // integers.
- return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
- }
- // splitK returns a balanced length-two representation of k and their signs.
- // This is algorithm 3.74 from [GECC].
- //
- // One thing of note about this algorithm is that no matter what c1 and c2 are,
- // the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
- // provable mathematically due to how a1/b1/a2/b2 are computed.
- //
- // c1 and c2 are chosen to minimize the max(k1,k2).
- func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
- // All math here is done with big.Int, which is slow.
- // At some point, it might be useful to write something similar to
- // fieldVal but for N instead of P as the prime field if this ends up
- // being a bottleneck.
- bigIntK := new(big.Int)
- c1, c2 := new(big.Int), new(big.Int)
- tmp1, tmp2 := new(big.Int), new(big.Int)
- k1, k2 := new(big.Int), new(big.Int)
- bigIntK.SetBytes(k)
- // c1 = round(b2 * k / n) from step 4.
- // Rounding isn't really necessary and costs too much, hence skipped
- c1.Mul(curve.b2, bigIntK)
- c1.Div(c1, curve.N)
- // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
- // Rounding isn't really necessary and costs too much, hence skipped
- c2.Mul(curve.b1, bigIntK)
- c2.Div(c2, curve.N)
- // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
- tmp1.Mul(c1, curve.a1)
- tmp2.Mul(c2, curve.a2)
- k1.Sub(bigIntK, tmp1)
- k1.Add(k1, tmp2)
- // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
- tmp1.Mul(c1, curve.b1)
- tmp2.Mul(c2, curve.b2)
- k2.Sub(tmp2, tmp1)
- // Note Bytes() throws out the sign of k1 and k2. This matters
- // since k1 and/or k2 can be negative. Hence, we pass that
- // back separately.
- return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
- }
- // moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This
- // is done by doing a simple modulo curve.N. We can do this since G^N = 1 and
- // thus any other valid point on the elliptic curve has the same order.
- func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
- // Since the order of G is curve.N, we can use a much smaller number
- // by doing modulo curve.N
- if len(k) > curve.byteSize {
- // Reduce k by performing modulo curve.N.
- tmpK := new(big.Int).SetBytes(k)
- tmpK.Mod(tmpK, curve.N)
- return tmpK.Bytes()
- }
- return k
- }
- // NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two
- // byte slices. The first is where 1s will be. The second is where -1s will
- // be. NAF is convenient in that on average, only 1/3rd of its values are
- // non-zero. This is algorithm 3.30 from [GECC].
- //
- // Essentially, this makes it possible to minimize the number of operations
- // since the resulting ints returned will be at least 50% 0s.
- func NAF(k []byte) ([]byte, []byte) {
- // The essence of this algorithm is that whenever we have consecutive 1s
- // in the binary, we want to put a -1 in the lowest bit and get a bunch
- // of 0s up to the highest bit of consecutive 1s. This is due to this
- // identity:
- // 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
- //
- // The algorithm thus may need to go 1 more bit than the length of the
- // bits we actually have, hence bits being 1 bit longer than was
- // necessary. Since we need to know whether adding will cause a carry,
- // we go from right-to-left in this addition.
- var carry, curIsOne, nextIsOne bool
- // these default to zero
- retPos := make([]byte, len(k)+1)
- retNeg := make([]byte, len(k)+1)
- for i := len(k) - 1; i >= 0; i-- {
- curByte := k[i]
- for j := uint(0); j < 8; j++ {
- curIsOne = curByte&1 == 1
- if j == 7 {
- if i == 0 {
- nextIsOne = false
- } else {
- nextIsOne = k[i-1]&1 == 1
- }
- } else {
- nextIsOne = curByte&2 == 2
- }
- if carry {
- if curIsOne {
- // This bit is 1, so continue to carry
- // and don't need to do anything.
- } else {
- // We've hit a 0 after some number of
- // 1s.
- if nextIsOne {
- // Start carrying again since
- // a new sequence of 1s is
- // starting.
- retNeg[i+1] += 1 << j
- } else {
- // Stop carrying since 1s have
- // stopped.
- carry = false
- retPos[i+1] += 1 << j
- }
- }
- } else if curIsOne {
- if nextIsOne {
- // If this is the start of at least 2
- // consecutive 1s, set the current one
- // to -1 and start carrying.
- retNeg[i+1] += 1 << j
- carry = true
- } else {
- // This is a singleton, not consecutive
- // 1s.
- retPos[i+1] += 1 << j
- }
- }
- curByte >>= 1
- }
- }
- if carry {
- retPos[0] = 1
- return retPos, retNeg
- }
- return retPos[1:], retNeg[1:]
- }
- // ScalarMult returns k*(Bx, By) where k is a big endian integer.
- // Part of the elliptic.Curve interface.
- func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
- // Point Q = ∞ (point at infinity).
- qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
- // Decompose K into k1 and k2 in order to halve the number of EC ops.
- // See Algorithm 3.74 in [GECC].
- k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
- // The main equation here to remember is:
- // k * P = k1 * P + k2 * ϕ(P)
- //
- // P1 below is P in the equation, P2 below is ϕ(P) in the equation
- p1x, p1y := curve.bigAffineToField(Bx, By)
- p1yNeg := new(fieldVal).NegateVal(p1y, 1)
- p1z := new(fieldVal).SetInt(1)
- // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math
- // goes through.
- p2x := new(fieldVal).Mul2(p1x, curve.beta)
- p2y := new(fieldVal).Set(p1y)
- p2yNeg := new(fieldVal).NegateVal(p2y, 1)
- p2z := new(fieldVal).SetInt(1)
- // Flip the positive and negative values of the points as needed
- // depending on the signs of k1 and k2. As mentioned in the equation
- // above, each of k1 and k2 are multiplied by the respective point.
- // Since -k * P is the same thing as k * -P, and the group law for
- // elliptic curves states that P(x, y) = -P(x, -y), it's faster and
- // simplifies the code to just make the point negative.
- if signK1 == -1 {
- p1y, p1yNeg = p1yNeg, p1y
- }
- if signK2 == -1 {
- p2y, p2yNeg = p2yNeg, p2y
- }
- // NAF versions of k1 and k2 should have a lot more zeros.
- //
- // The Pos version of the bytes contain the +1s and the Neg versions
- // contain the -1s.
- k1PosNAF, k1NegNAF := NAF(k1)
- k2PosNAF, k2NegNAF := NAF(k2)
- k1Len := len(k1PosNAF)
- k2Len := len(k2PosNAF)
- m := k1Len
- if m < k2Len {
- m = k2Len
- }
- // Add left-to-right using the NAF optimization. See algorithm 3.77
- // from [GECC]. This should be faster overall since there will be a lot
- // more instances of 0, hence reducing the number of Jacobian additions
- // at the cost of 1 possible extra doubling.
- var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
- for i := 0; i < m; i++ {
- // Since we're going left-to-right, pad the front with 0s.
- if i < m-k1Len {
- k1BytePos = 0
- k1ByteNeg = 0
- } else {
- k1BytePos = k1PosNAF[i-(m-k1Len)]
- k1ByteNeg = k1NegNAF[i-(m-k1Len)]
- }
- if i < m-k2Len {
- k2BytePos = 0
- k2ByteNeg = 0
- } else {
- k2BytePos = k2PosNAF[i-(m-k2Len)]
- k2ByteNeg = k2NegNAF[i-(m-k2Len)]
- }
- for j := 7; j >= 0; j-- {
- // Q = 2 * Q
- curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
- if k1BytePos&0x80 == 0x80 {
- curve.addJacobian(qx, qy, qz, p1x, p1y, p1z,
- qx, qy, qz)
- } else if k1ByteNeg&0x80 == 0x80 {
- curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z,
- qx, qy, qz)
- }
- if k2BytePos&0x80 == 0x80 {
- curve.addJacobian(qx, qy, qz, p2x, p2y, p2z,
- qx, qy, qz)
- } else if k2ByteNeg&0x80 == 0x80 {
- curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z,
- qx, qy, qz)
- }
- k1BytePos <<= 1
- k1ByteNeg <<= 1
- k2BytePos <<= 1
- k2ByteNeg <<= 1
- }
- }
- // Convert the Jacobian coordinate field values back to affine big.Ints.
- return curve.fieldJacobianToBigAffine(qx, qy, qz)
- }
- // ScalarBaseMult returns k*G where G is the base point of the group and k is a
- // big endian integer.
- // Part of the elliptic.Curve interface.
- func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
- newK := curve.moduloReduce(k)
- diff := len(curve.bytePoints) - len(newK)
- // Point Q = ∞ (point at infinity).
- qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
- // curve.bytePoints has all 256 byte points for each 8-bit window. The
- // strategy is to add up the byte points. This is best understood by
- // expressing k in base-256 which it already sort of is.
- // Each "digit" in the 8-bit window can be looked up using bytePoints
- // and added together.
- for i, byteVal := range newK {
- p := curve.bytePoints[diff+i][byteVal]
- curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz)
- }
- return curve.fieldJacobianToBigAffine(qx, qy, qz)
- }
- // QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating
- // square roots via exponention.
- func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
- return curve.q
- }
- var initonce sync.Once
- var secp256k1 KoblitzCurve
- func initAll() {
- initS256()
- }
- // fromHex converts the passed hex string into a big integer pointer and will
- // panic is there is an error. This is only provided for the hard-coded
- // constants so errors in the source code can bet detected. It will only (and
- // must only) be called for initialization purposes.
- func fromHex(s string) *big.Int {
- r, ok := new(big.Int).SetString(s, 16)
- if !ok {
- panic("invalid hex in source file: " + s)
- }
- return r
- }
- func initS256() {
- // Curve parameters taken from [SECG] section 2.4.1.
- secp256k1.CurveParams = new(elliptic.CurveParams)
- secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
- secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
- secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007")
- secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
- secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
- secp256k1.BitSize = 256
- secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
- big.NewInt(1)), big.NewInt(4))
- secp256k1.H = 1
- secp256k1.halfOrder = new(big.Int).Rsh(secp256k1.N, 1)
- // Provided for convenience since this gets computed repeatedly.
- secp256k1.byteSize = secp256k1.BitSize / 8
- // Deserialize and set the pre-computed table used to accelerate scalar
- // base multiplication. This is hard-coded data, so any errors are
- // panics because it means something is wrong in the source code.
- if err := loadS256BytePoints(); err != nil {
- panic(err)
- }
- // Next 6 constants are from Hal Finney's bitcointalk.org post:
- // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
- // May he rest in peace.
- //
- // They have also been independently derived from the code in the
- // EndomorphismVectors function in gensecp256k1.go.
- secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72")
- secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
- secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
- secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3")
- secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
- secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
- // Alternatively, we can use the parameters below, however, they seem
- // to be about 8% slower.
- // secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE")
- // secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
- // secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3")
- // secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15")
- // secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
- // secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
- }
- // S256 returns a Curve which implements secp256k1.
- func S256() *KoblitzCurve {
- initonce.Do(initAll)
- return &secp256k1
- }
|