proof_test.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. // Copyright 2015 The go-ethereum Authors
  2. // This file is part of the go-ethereum library.
  3. //
  4. // The go-ethereum library is free software: you can redistribute it and/or modify
  5. // it under the terms of the GNU Lesser General Public License as published by
  6. // the Free Software Foundation, either version 3 of the License, or
  7. // (at your option) any later version.
  8. //
  9. // The go-ethereum library is distributed in the hope that it will be useful,
  10. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. // GNU Lesser General Public License for more details.
  13. //
  14. // You should have received a copy of the GNU Lesser General Public License
  15. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
  16. package trie
  17. import (
  18. "bytes"
  19. crand "crypto/rand"
  20. mrand "math/rand"
  21. "sort"
  22. "testing"
  23. "time"
  24. "github.com/ethereum/go-ethereum/common"
  25. "github.com/ethereum/go-ethereum/crypto"
  26. "github.com/ethereum/go-ethereum/ethdb/memorydb"
  27. )
  28. func init() {
  29. mrand.Seed(time.Now().Unix())
  30. }
  31. // makeProvers creates Merkle trie provers based on different implementations to
  32. // test all variations.
  33. func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
  34. var provers []func(key []byte) *memorydb.Database
  35. // Create a direct trie based Merkle prover
  36. provers = append(provers, func(key []byte) *memorydb.Database {
  37. proof := memorydb.New()
  38. trie.Prove(key, 0, proof)
  39. return proof
  40. })
  41. // Create a leaf iterator based Merkle prover
  42. provers = append(provers, func(key []byte) *memorydb.Database {
  43. proof := memorydb.New()
  44. if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
  45. for _, p := range it.Prove() {
  46. proof.Put(crypto.Keccak256(p), p)
  47. }
  48. }
  49. return proof
  50. })
  51. return provers
  52. }
  53. func TestProof(t *testing.T) {
  54. trie, vals := randomTrie(500)
  55. root := trie.Hash()
  56. for i, prover := range makeProvers(trie) {
  57. for _, kv := range vals {
  58. proof := prover(kv.k)
  59. if proof == nil {
  60. t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
  61. }
  62. val, err := VerifyProof(root, kv.k, proof)
  63. if err != nil {
  64. t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
  65. }
  66. if !bytes.Equal(val, kv.v) {
  67. t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
  68. }
  69. }
  70. }
  71. }
  72. func TestOneElementProof(t *testing.T) {
  73. trie := new(Trie)
  74. updateString(trie, "k", "v")
  75. for i, prover := range makeProvers(trie) {
  76. proof := prover([]byte("k"))
  77. if proof == nil {
  78. t.Fatalf("prover %d: nil proof", i)
  79. }
  80. if proof.Len() != 1 {
  81. t.Errorf("prover %d: proof should have one element", i)
  82. }
  83. val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
  84. if err != nil {
  85. t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  86. }
  87. if !bytes.Equal(val, []byte("v")) {
  88. t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
  89. }
  90. }
  91. }
  92. type entrySlice []*kv
  93. func (p entrySlice) Len() int { return len(p) }
  94. func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
  95. func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
  96. func TestRangeProof(t *testing.T) {
  97. trie, vals := randomTrie(4096)
  98. var entries entrySlice
  99. for _, kv := range vals {
  100. entries = append(entries, kv)
  101. }
  102. sort.Sort(entries)
  103. for i := 0; i < 500; i++ {
  104. start := mrand.Intn(len(entries))
  105. end := mrand.Intn(len(entries)-start) + start
  106. if start == end {
  107. continue
  108. }
  109. firstProof, lastProof := memorydb.New(), memorydb.New()
  110. if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
  111. t.Fatalf("Failed to prove the first node %v", err)
  112. }
  113. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  114. t.Fatalf("Failed to prove the last node %v", err)
  115. }
  116. var keys [][]byte
  117. var vals [][]byte
  118. for i := start; i < end; i++ {
  119. keys = append(keys, entries[i].k)
  120. vals = append(vals, entries[i].v)
  121. }
  122. err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
  123. if err != nil {
  124. t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  125. }
  126. }
  127. }
  128. func TestBadRangeProof(t *testing.T) {
  129. trie, vals := randomTrie(4096)
  130. var entries entrySlice
  131. for _, kv := range vals {
  132. entries = append(entries, kv)
  133. }
  134. sort.Sort(entries)
  135. for i := 0; i < 500; i++ {
  136. start := mrand.Intn(len(entries))
  137. end := mrand.Intn(len(entries)-start) + start
  138. if start == end {
  139. continue
  140. }
  141. firstProof, lastProof := memorydb.New(), memorydb.New()
  142. if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
  143. t.Fatalf("Failed to prove the first node %v", err)
  144. }
  145. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  146. t.Fatalf("Failed to prove the last node %v", err)
  147. }
  148. var keys [][]byte
  149. var vals [][]byte
  150. for i := start; i < end; i++ {
  151. keys = append(keys, entries[i].k)
  152. vals = append(vals, entries[i].v)
  153. }
  154. testcase := mrand.Intn(6)
  155. var index int
  156. switch testcase {
  157. case 0:
  158. // Modified key
  159. index = mrand.Intn(end - start)
  160. keys[index] = randBytes(32) // In theory it can't be same
  161. case 1:
  162. // Modified val
  163. index = mrand.Intn(end - start)
  164. vals[index] = randBytes(20) // In theory it can't be same
  165. case 2:
  166. // Gapped entry slice
  167. // There are only two elements, skip it. Dropped any element
  168. // will lead to single edge proof which is always correct.
  169. if end-start <= 2 {
  170. continue
  171. }
  172. // If the dropped element is the first or last one and it's a
  173. // batch of small size elements. In this special case, it can
  174. // happen that the proof for the edge element is exactly same
  175. // with the first/last second element(since small values are
  176. // embedded in the parent). Avoid this case.
  177. index = mrand.Intn(end - start)
  178. if (index == end-start-1 || index == 0) && end <= 100 {
  179. continue
  180. }
  181. keys = append(keys[:index], keys[index+1:]...)
  182. vals = append(vals[:index], vals[index+1:]...)
  183. case 3:
  184. // Switched entry slice, same effect with gapped
  185. index = mrand.Intn(end - start)
  186. keys[index] = entries[len(entries)-1].k
  187. vals[index] = entries[len(entries)-1].v
  188. case 4:
  189. // Set random key to nil
  190. index = mrand.Intn(end - start)
  191. keys[index] = nil
  192. case 5:
  193. // Set random value to nil
  194. index = mrand.Intn(end - start)
  195. vals[index] = nil
  196. }
  197. err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
  198. if err == nil {
  199. t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
  200. }
  201. }
  202. }
  203. // TestGappedRangeProof focuses on the small trie with embedded nodes.
  204. // If the gapped node is embedded in the trie, it should be detected too.
  205. func TestGappedRangeProof(t *testing.T) {
  206. trie := new(Trie)
  207. var entries []*kv // Sorted entries
  208. for i := byte(0); i < 10; i++ {
  209. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  210. trie.Update(value.k, value.v)
  211. entries = append(entries, value)
  212. }
  213. first, last := 2, 8
  214. firstProof, lastProof := memorydb.New(), memorydb.New()
  215. if err := trie.Prove(entries[first].k, 0, firstProof); err != nil {
  216. t.Fatalf("Failed to prove the first node %v", err)
  217. }
  218. if err := trie.Prove(entries[last-1].k, 0, lastProof); err != nil {
  219. t.Fatalf("Failed to prove the last node %v", err)
  220. }
  221. var keys [][]byte
  222. var vals [][]byte
  223. for i := first; i < last; i++ {
  224. if i == (first+last)/2 {
  225. continue
  226. }
  227. keys = append(keys, entries[i].k)
  228. vals = append(vals, entries[i].v)
  229. }
  230. err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
  231. if err == nil {
  232. t.Fatal("expect error, got nil")
  233. }
  234. }
  235. func TestBadProof(t *testing.T) {
  236. trie, vals := randomTrie(800)
  237. root := trie.Hash()
  238. for i, prover := range makeProvers(trie) {
  239. for _, kv := range vals {
  240. proof := prover(kv.k)
  241. if proof == nil {
  242. t.Fatalf("prover %d: nil proof", i)
  243. }
  244. it := proof.NewIterator(nil, nil)
  245. for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
  246. it.Next()
  247. }
  248. key := it.Key()
  249. val, _ := proof.Get(key)
  250. proof.Delete(key)
  251. it.Release()
  252. mutateByte(val)
  253. proof.Put(crypto.Keccak256(val), val)
  254. if _, err := VerifyProof(root, kv.k, proof); err == nil {
  255. t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
  256. }
  257. }
  258. }
  259. }
  260. // Tests that missing keys can also be proven. The test explicitly uses a single
  261. // entry trie and checks for missing keys both before and after the single entry.
  262. func TestMissingKeyProof(t *testing.T) {
  263. trie := new(Trie)
  264. updateString(trie, "k", "v")
  265. for i, key := range []string{"a", "j", "l", "z"} {
  266. proof := memorydb.New()
  267. trie.Prove([]byte(key), 0, proof)
  268. if proof.Len() != 1 {
  269. t.Errorf("test %d: proof should have one element", i)
  270. }
  271. val, err := VerifyProof(trie.Hash(), []byte(key), proof)
  272. if err != nil {
  273. t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  274. }
  275. if val != nil {
  276. t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
  277. }
  278. }
  279. }
  280. // mutateByte changes one byte in b.
  281. func mutateByte(b []byte) {
  282. for r := mrand.Intn(len(b)); ; {
  283. new := byte(mrand.Intn(255))
  284. if new != b[r] {
  285. b[r] = new
  286. break
  287. }
  288. }
  289. }
  290. func BenchmarkProve(b *testing.B) {
  291. trie, vals := randomTrie(100)
  292. var keys []string
  293. for k := range vals {
  294. keys = append(keys, k)
  295. }
  296. b.ResetTimer()
  297. for i := 0; i < b.N; i++ {
  298. kv := vals[keys[i%len(keys)]]
  299. proofs := memorydb.New()
  300. if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
  301. b.Fatalf("zero length proof for %x", kv.k)
  302. }
  303. }
  304. }
  305. func BenchmarkVerifyProof(b *testing.B) {
  306. trie, vals := randomTrie(100)
  307. root := trie.Hash()
  308. var keys []string
  309. var proofs []*memorydb.Database
  310. for k := range vals {
  311. keys = append(keys, k)
  312. proof := memorydb.New()
  313. trie.Prove([]byte(k), 0, proof)
  314. proofs = append(proofs, proof)
  315. }
  316. b.ResetTimer()
  317. for i := 0; i < b.N; i++ {
  318. im := i % len(keys)
  319. if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
  320. b.Fatalf("key %x: %v", keys[im], err)
  321. }
  322. }
  323. }
  324. func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
  325. func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
  326. func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
  327. func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
  328. func benchmarkVerifyRangeProof(b *testing.B, size int) {
  329. trie, vals := randomTrie(8192)
  330. var entries entrySlice
  331. for _, kv := range vals {
  332. entries = append(entries, kv)
  333. }
  334. sort.Sort(entries)
  335. start := 2
  336. end := start + size
  337. firstProof, lastProof := memorydb.New(), memorydb.New()
  338. if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
  339. b.Fatalf("Failed to prove the first node %v", err)
  340. }
  341. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  342. b.Fatalf("Failed to prove the last node %v", err)
  343. }
  344. var keys [][]byte
  345. var values [][]byte
  346. for i := start; i < end; i++ {
  347. keys = append(keys, entries[i].k)
  348. values = append(values, entries[i].v)
  349. }
  350. b.ResetTimer()
  351. for i := 0; i < b.N; i++ {
  352. err := VerifyRangeProof(trie.Hash(), keys, values, firstProof, lastProof)
  353. if err != nil {
  354. b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  355. }
  356. }
  357. }
  358. func randomTrie(n int) (*Trie, map[string]*kv) {
  359. trie := new(Trie)
  360. vals := make(map[string]*kv)
  361. for i := byte(0); i < 100; i++ {
  362. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  363. value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
  364. trie.Update(value.k, value.v)
  365. trie.Update(value2.k, value2.v)
  366. vals[string(value.k)] = value
  367. vals[string(value2.k)] = value2
  368. }
  369. for i := 0; i < n; i++ {
  370. value := &kv{randBytes(32), randBytes(20), false}
  371. trie.Update(value.k, value.v)
  372. vals[string(value.k)] = value
  373. }
  374. return trie, vals
  375. }
  376. func randBytes(n int) []byte {
  377. r := make([]byte, n)
  378. crand.Read(r)
  379. return r
  380. }