proof_test.go 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891
  1. // Copyright 2015 The go-ethereum Authors
  2. // This file is part of the go-ethereum library.
  3. //
  4. // The go-ethereum library is free software: you can redistribute it and/or modify
  5. // it under the terms of the GNU Lesser General Public License as published by
  6. // the Free Software Foundation, either version 3 of the License, or
  7. // (at your option) any later version.
  8. //
  9. // The go-ethereum library is distributed in the hope that it will be useful,
  10. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. // GNU Lesser General Public License for more details.
  13. //
  14. // You should have received a copy of the GNU Lesser General Public License
  15. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
  16. package trie
  17. import (
  18. "bytes"
  19. crand "crypto/rand"
  20. mrand "math/rand"
  21. "sort"
  22. "testing"
  23. "time"
  24. "github.com/ethereum/go-ethereum/common"
  25. "github.com/ethereum/go-ethereum/crypto"
  26. "github.com/ethereum/go-ethereum/ethdb/memorydb"
  27. )
  28. func init() {
  29. mrand.Seed(time.Now().Unix())
  30. }
  31. // makeProvers creates Merkle trie provers based on different implementations to
  32. // test all variations.
  33. func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
  34. var provers []func(key []byte) *memorydb.Database
  35. // Create a direct trie based Merkle prover
  36. provers = append(provers, func(key []byte) *memorydb.Database {
  37. proof := memorydb.New()
  38. trie.Prove(key, 0, proof)
  39. return proof
  40. })
  41. // Create a leaf iterator based Merkle prover
  42. provers = append(provers, func(key []byte) *memorydb.Database {
  43. proof := memorydb.New()
  44. if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
  45. for _, p := range it.Prove() {
  46. proof.Put(crypto.Keccak256(p), p)
  47. }
  48. }
  49. return proof
  50. })
  51. return provers
  52. }
  53. func TestProof(t *testing.T) {
  54. trie, vals := randomTrie(500)
  55. root := trie.Hash()
  56. for i, prover := range makeProvers(trie) {
  57. for _, kv := range vals {
  58. proof := prover(kv.k)
  59. if proof == nil {
  60. t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
  61. }
  62. val, err := VerifyProof(root, kv.k, proof)
  63. if err != nil {
  64. t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
  65. }
  66. if !bytes.Equal(val, kv.v) {
  67. t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
  68. }
  69. }
  70. }
  71. }
  72. func TestOneElementProof(t *testing.T) {
  73. trie := new(Trie)
  74. updateString(trie, "k", "v")
  75. for i, prover := range makeProvers(trie) {
  76. proof := prover([]byte("k"))
  77. if proof == nil {
  78. t.Fatalf("prover %d: nil proof", i)
  79. }
  80. if proof.Len() != 1 {
  81. t.Errorf("prover %d: proof should have one element", i)
  82. }
  83. val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
  84. if err != nil {
  85. t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  86. }
  87. if !bytes.Equal(val, []byte("v")) {
  88. t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
  89. }
  90. }
  91. }
  92. func TestBadProof(t *testing.T) {
  93. trie, vals := randomTrie(800)
  94. root := trie.Hash()
  95. for i, prover := range makeProvers(trie) {
  96. for _, kv := range vals {
  97. proof := prover(kv.k)
  98. if proof == nil {
  99. t.Fatalf("prover %d: nil proof", i)
  100. }
  101. it := proof.NewIterator(nil, nil)
  102. for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
  103. it.Next()
  104. }
  105. key := it.Key()
  106. val, _ := proof.Get(key)
  107. proof.Delete(key)
  108. it.Release()
  109. mutateByte(val)
  110. proof.Put(crypto.Keccak256(val), val)
  111. if _, err := VerifyProof(root, kv.k, proof); err == nil {
  112. t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
  113. }
  114. }
  115. }
  116. }
  117. // Tests that missing keys can also be proven. The test explicitly uses a single
  118. // entry trie and checks for missing keys both before and after the single entry.
  119. func TestMissingKeyProof(t *testing.T) {
  120. trie := new(Trie)
  121. updateString(trie, "k", "v")
  122. for i, key := range []string{"a", "j", "l", "z"} {
  123. proof := memorydb.New()
  124. trie.Prove([]byte(key), 0, proof)
  125. if proof.Len() != 1 {
  126. t.Errorf("test %d: proof should have one element", i)
  127. }
  128. val, err := VerifyProof(trie.Hash(), []byte(key), proof)
  129. if err != nil {
  130. t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  131. }
  132. if val != nil {
  133. t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
  134. }
  135. }
  136. }
  137. type entrySlice []*kv
  138. func (p entrySlice) Len() int { return len(p) }
  139. func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
  140. func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
  141. // TestRangeProof tests normal range proof with both edge proofs
  142. // as the existent proof. The test cases are generated randomly.
  143. func TestRangeProof(t *testing.T) {
  144. trie, vals := randomTrie(4096)
  145. var entries entrySlice
  146. for _, kv := range vals {
  147. entries = append(entries, kv)
  148. }
  149. sort.Sort(entries)
  150. for i := 0; i < 500; i++ {
  151. start := mrand.Intn(len(entries))
  152. end := mrand.Intn(len(entries)-start) + start + 1
  153. proof := memorydb.New()
  154. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  155. t.Fatalf("Failed to prove the first node %v", err)
  156. }
  157. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  158. t.Fatalf("Failed to prove the last node %v", err)
  159. }
  160. var keys [][]byte
  161. var vals [][]byte
  162. for i := start; i < end; i++ {
  163. keys = append(keys, entries[i].k)
  164. vals = append(vals, entries[i].v)
  165. }
  166. err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
  167. if err != nil {
  168. t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  169. }
  170. }
  171. }
  172. // TestRangeProof tests normal range proof with two non-existent proofs.
  173. // The test cases are generated randomly.
  174. func TestRangeProofWithNonExistentProof(t *testing.T) {
  175. trie, vals := randomTrie(4096)
  176. var entries entrySlice
  177. for _, kv := range vals {
  178. entries = append(entries, kv)
  179. }
  180. sort.Sort(entries)
  181. for i := 0; i < 500; i++ {
  182. start := mrand.Intn(len(entries))
  183. end := mrand.Intn(len(entries)-start) + start + 1
  184. proof := memorydb.New()
  185. // Short circuit if the decreased key is same with the previous key
  186. first := decreseKey(common.CopyBytes(entries[start].k))
  187. if start != 0 && bytes.Equal(first, entries[start-1].k) {
  188. continue
  189. }
  190. // Short circuit if the decreased key is underflow
  191. if bytes.Compare(first, entries[start].k) > 0 {
  192. continue
  193. }
  194. // Short circuit if the increased key is same with the next key
  195. last := increseKey(common.CopyBytes(entries[end-1].k))
  196. if end != len(entries) && bytes.Equal(last, entries[end].k) {
  197. continue
  198. }
  199. // Short circuit if the increased key is overflow
  200. if bytes.Compare(last, entries[end-1].k) < 0 {
  201. continue
  202. }
  203. if err := trie.Prove(first, 0, proof); err != nil {
  204. t.Fatalf("Failed to prove the first node %v", err)
  205. }
  206. if err := trie.Prove(last, 0, proof); err != nil {
  207. t.Fatalf("Failed to prove the last node %v", err)
  208. }
  209. var keys [][]byte
  210. var vals [][]byte
  211. for i := start; i < end; i++ {
  212. keys = append(keys, entries[i].k)
  213. vals = append(vals, entries[i].v)
  214. }
  215. err, _ := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
  216. if err != nil {
  217. t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  218. }
  219. }
  220. // Special case, two edge proofs for two edge key.
  221. proof := memorydb.New()
  222. first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
  223. last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
  224. if err := trie.Prove(first, 0, proof); err != nil {
  225. t.Fatalf("Failed to prove the first node %v", err)
  226. }
  227. if err := trie.Prove(last, 0, proof); err != nil {
  228. t.Fatalf("Failed to prove the last node %v", err)
  229. }
  230. var k [][]byte
  231. var v [][]byte
  232. for i := 0; i < len(entries); i++ {
  233. k = append(k, entries[i].k)
  234. v = append(v, entries[i].v)
  235. }
  236. err, _ := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
  237. if err != nil {
  238. t.Fatal("Failed to verify whole rang with non-existent edges")
  239. }
  240. }
  241. // TestRangeProofWithInvalidNonExistentProof tests such scenarios:
  242. // - There exists a gap between the first element and the left edge proof
  243. // - There exists a gap between the last element and the right edge proof
  244. func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
  245. trie, vals := randomTrie(4096)
  246. var entries entrySlice
  247. for _, kv := range vals {
  248. entries = append(entries, kv)
  249. }
  250. sort.Sort(entries)
  251. // Case 1
  252. start, end := 100, 200
  253. first := decreseKey(common.CopyBytes(entries[start].k))
  254. proof := memorydb.New()
  255. if err := trie.Prove(first, 0, proof); err != nil {
  256. t.Fatalf("Failed to prove the first node %v", err)
  257. }
  258. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  259. t.Fatalf("Failed to prove the last node %v", err)
  260. }
  261. start = 105 // Gap created
  262. k := make([][]byte, 0)
  263. v := make([][]byte, 0)
  264. for i := start; i < end; i++ {
  265. k = append(k, entries[i].k)
  266. v = append(v, entries[i].v)
  267. }
  268. err, _ := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
  269. if err == nil {
  270. t.Fatalf("Expected to detect the error, got nil")
  271. }
  272. // Case 2
  273. start, end = 100, 200
  274. last := increseKey(common.CopyBytes(entries[end-1].k))
  275. proof = memorydb.New()
  276. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  277. t.Fatalf("Failed to prove the first node %v", err)
  278. }
  279. if err := trie.Prove(last, 0, proof); err != nil {
  280. t.Fatalf("Failed to prove the last node %v", err)
  281. }
  282. end = 195 // Capped slice
  283. k = make([][]byte, 0)
  284. v = make([][]byte, 0)
  285. for i := start; i < end; i++ {
  286. k = append(k, entries[i].k)
  287. v = append(v, entries[i].v)
  288. }
  289. err, _ = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
  290. if err == nil {
  291. t.Fatalf("Expected to detect the error, got nil")
  292. }
  293. }
  294. // TestOneElementRangeProof tests the proof with only one
  295. // element. The first edge proof can be existent one or
  296. // non-existent one.
  297. func TestOneElementRangeProof(t *testing.T) {
  298. trie, vals := randomTrie(4096)
  299. var entries entrySlice
  300. for _, kv := range vals {
  301. entries = append(entries, kv)
  302. }
  303. sort.Sort(entries)
  304. // One element with existent edge proof, both edge proofs
  305. // point to the SAME key.
  306. start := 1000
  307. proof := memorydb.New()
  308. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  309. t.Fatalf("Failed to prove the first node %v", err)
  310. }
  311. err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  312. if err != nil {
  313. t.Fatalf("Expected no error, got %v", err)
  314. }
  315. // One element with left non-existent edge proof
  316. start = 1000
  317. first := decreseKey(common.CopyBytes(entries[start].k))
  318. proof = memorydb.New()
  319. if err := trie.Prove(first, 0, proof); err != nil {
  320. t.Fatalf("Failed to prove the first node %v", err)
  321. }
  322. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  323. t.Fatalf("Failed to prove the last node %v", err)
  324. }
  325. err, _ = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  326. if err != nil {
  327. t.Fatalf("Expected no error, got %v", err)
  328. }
  329. // One element with right non-existent edge proof
  330. start = 1000
  331. last := increseKey(common.CopyBytes(entries[start].k))
  332. proof = memorydb.New()
  333. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  334. t.Fatalf("Failed to prove the first node %v", err)
  335. }
  336. if err := trie.Prove(last, 0, proof); err != nil {
  337. t.Fatalf("Failed to prove the last node %v", err)
  338. }
  339. err, _ = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  340. if err != nil {
  341. t.Fatalf("Expected no error, got %v", err)
  342. }
  343. // One element with two non-existent edge proofs
  344. start = 1000
  345. first, last = decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[start].k))
  346. proof = memorydb.New()
  347. if err := trie.Prove(first, 0, proof); err != nil {
  348. t.Fatalf("Failed to prove the first node %v", err)
  349. }
  350. if err := trie.Prove(last, 0, proof); err != nil {
  351. t.Fatalf("Failed to prove the last node %v", err)
  352. }
  353. err, _ = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
  354. if err != nil {
  355. t.Fatalf("Expected no error, got %v", err)
  356. }
  357. }
  358. // TestAllElementsProof tests the range proof with all elements.
  359. // The edge proofs can be nil.
  360. func TestAllElementsProof(t *testing.T) {
  361. trie, vals := randomTrie(4096)
  362. var entries entrySlice
  363. for _, kv := range vals {
  364. entries = append(entries, kv)
  365. }
  366. sort.Sort(entries)
  367. var k [][]byte
  368. var v [][]byte
  369. for i := 0; i < len(entries); i++ {
  370. k = append(k, entries[i].k)
  371. v = append(v, entries[i].v)
  372. }
  373. err, _ := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
  374. if err != nil {
  375. t.Fatalf("Expected no error, got %v", err)
  376. }
  377. // With edge proofs, it should still work.
  378. proof := memorydb.New()
  379. if err := trie.Prove(entries[0].k, 0, proof); err != nil {
  380. t.Fatalf("Failed to prove the first node %v", err)
  381. }
  382. if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil {
  383. t.Fatalf("Failed to prove the last node %v", err)
  384. }
  385. err, _ = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
  386. if err != nil {
  387. t.Fatalf("Expected no error, got %v", err)
  388. }
  389. // Even with non-existent edge proofs, it should still work.
  390. proof = memorydb.New()
  391. first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
  392. last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
  393. if err := trie.Prove(first, 0, proof); err != nil {
  394. t.Fatalf("Failed to prove the first node %v", err)
  395. }
  396. if err := trie.Prove(last, 0, proof); err != nil {
  397. t.Fatalf("Failed to prove the last node %v", err)
  398. }
  399. err, _ = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
  400. if err != nil {
  401. t.Fatalf("Expected no error, got %v", err)
  402. }
  403. }
  404. // TestSingleSideRangeProof tests the range starts from zero.
  405. func TestSingleSideRangeProof(t *testing.T) {
  406. for i := 0; i < 64; i++ {
  407. trie := new(Trie)
  408. var entries entrySlice
  409. for i := 0; i < 4096; i++ {
  410. value := &kv{randBytes(32), randBytes(20), false}
  411. trie.Update(value.k, value.v)
  412. entries = append(entries, value)
  413. }
  414. sort.Sort(entries)
  415. var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
  416. for _, pos := range cases {
  417. proof := memorydb.New()
  418. if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil {
  419. t.Fatalf("Failed to prove the first node %v", err)
  420. }
  421. if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
  422. t.Fatalf("Failed to prove the first node %v", err)
  423. }
  424. k := make([][]byte, 0)
  425. v := make([][]byte, 0)
  426. for i := 0; i <= pos; i++ {
  427. k = append(k, entries[i].k)
  428. v = append(v, entries[i].v)
  429. }
  430. err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
  431. if err != nil {
  432. t.Fatalf("Expected no error, got %v", err)
  433. }
  434. }
  435. }
  436. }
  437. // TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff.
  438. func TestReverseSingleSideRangeProof(t *testing.T) {
  439. for i := 0; i < 64; i++ {
  440. trie := new(Trie)
  441. var entries entrySlice
  442. for i := 0; i < 4096; i++ {
  443. value := &kv{randBytes(32), randBytes(20), false}
  444. trie.Update(value.k, value.v)
  445. entries = append(entries, value)
  446. }
  447. sort.Sort(entries)
  448. var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
  449. for _, pos := range cases {
  450. proof := memorydb.New()
  451. if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
  452. t.Fatalf("Failed to prove the first node %v", err)
  453. }
  454. last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
  455. if err := trie.Prove(last.Bytes(), 0, proof); err != nil {
  456. t.Fatalf("Failed to prove the last node %v", err)
  457. }
  458. k := make([][]byte, 0)
  459. v := make([][]byte, 0)
  460. for i := pos; i < len(entries); i++ {
  461. k = append(k, entries[i].k)
  462. v = append(v, entries[i].v)
  463. }
  464. err, _ := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
  465. if err != nil {
  466. t.Fatalf("Expected no error, got %v", err)
  467. }
  468. }
  469. }
  470. }
  471. // TestBadRangeProof tests a few cases which the proof is wrong.
  472. // The prover is expected to detect the error.
  473. func TestBadRangeProof(t *testing.T) {
  474. trie, vals := randomTrie(4096)
  475. var entries entrySlice
  476. for _, kv := range vals {
  477. entries = append(entries, kv)
  478. }
  479. sort.Sort(entries)
  480. for i := 0; i < 500; i++ {
  481. start := mrand.Intn(len(entries))
  482. end := mrand.Intn(len(entries)-start) + start + 1
  483. proof := memorydb.New()
  484. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  485. t.Fatalf("Failed to prove the first node %v", err)
  486. }
  487. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  488. t.Fatalf("Failed to prove the last node %v", err)
  489. }
  490. var keys [][]byte
  491. var vals [][]byte
  492. for i := start; i < end; i++ {
  493. keys = append(keys, entries[i].k)
  494. vals = append(vals, entries[i].v)
  495. }
  496. var first, last = keys[0], keys[len(keys)-1]
  497. testcase := mrand.Intn(6)
  498. var index int
  499. switch testcase {
  500. case 0:
  501. // Modified key
  502. index = mrand.Intn(end - start)
  503. keys[index] = randBytes(32) // In theory it can't be same
  504. case 1:
  505. // Modified val
  506. index = mrand.Intn(end - start)
  507. vals[index] = randBytes(20) // In theory it can't be same
  508. case 2:
  509. // Gapped entry slice
  510. index = mrand.Intn(end - start)
  511. if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
  512. continue
  513. }
  514. keys = append(keys[:index], keys[index+1:]...)
  515. vals = append(vals[:index], vals[index+1:]...)
  516. case 3:
  517. // Out of order
  518. index1 := mrand.Intn(end - start)
  519. index2 := mrand.Intn(end - start)
  520. if index1 == index2 {
  521. continue
  522. }
  523. keys[index1], keys[index2] = keys[index2], keys[index1]
  524. vals[index1], vals[index2] = vals[index2], vals[index1]
  525. case 4:
  526. // Set random key to nil, do nothing
  527. index = mrand.Intn(end - start)
  528. keys[index] = nil
  529. case 5:
  530. // Set random value to nil, deletion
  531. index = mrand.Intn(end - start)
  532. vals[index] = nil
  533. }
  534. err, _ := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
  535. if err == nil {
  536. t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
  537. }
  538. }
  539. }
  540. // TestGappedRangeProof focuses on the small trie with embedded nodes.
  541. // If the gapped node is embedded in the trie, it should be detected too.
  542. func TestGappedRangeProof(t *testing.T) {
  543. trie := new(Trie)
  544. var entries []*kv // Sorted entries
  545. for i := byte(0); i < 10; i++ {
  546. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  547. trie.Update(value.k, value.v)
  548. entries = append(entries, value)
  549. }
  550. first, last := 2, 8
  551. proof := memorydb.New()
  552. if err := trie.Prove(entries[first].k, 0, proof); err != nil {
  553. t.Fatalf("Failed to prove the first node %v", err)
  554. }
  555. if err := trie.Prove(entries[last-1].k, 0, proof); err != nil {
  556. t.Fatalf("Failed to prove the last node %v", err)
  557. }
  558. var keys [][]byte
  559. var vals [][]byte
  560. for i := first; i < last; i++ {
  561. if i == (first+last)/2 {
  562. continue
  563. }
  564. keys = append(keys, entries[i].k)
  565. vals = append(vals, entries[i].v)
  566. }
  567. err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
  568. if err == nil {
  569. t.Fatal("expect error, got nil")
  570. }
  571. }
  572. // TestSameSideProofs tests the element is not in the range covered by proofs
  573. func TestSameSideProofs(t *testing.T) {
  574. trie, vals := randomTrie(4096)
  575. var entries entrySlice
  576. for _, kv := range vals {
  577. entries = append(entries, kv)
  578. }
  579. sort.Sort(entries)
  580. pos := 1000
  581. first := decreseKey(common.CopyBytes(entries[pos].k))
  582. first = decreseKey(first)
  583. last := decreseKey(common.CopyBytes(entries[pos].k))
  584. proof := memorydb.New()
  585. if err := trie.Prove(first, 0, proof); err != nil {
  586. t.Fatalf("Failed to prove the first node %v", err)
  587. }
  588. if err := trie.Prove(last, 0, proof); err != nil {
  589. t.Fatalf("Failed to prove the last node %v", err)
  590. }
  591. err, _ := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
  592. if err == nil {
  593. t.Fatalf("Expected error, got nil")
  594. }
  595. first = increseKey(common.CopyBytes(entries[pos].k))
  596. last = increseKey(common.CopyBytes(entries[pos].k))
  597. last = increseKey(last)
  598. proof = memorydb.New()
  599. if err := trie.Prove(first, 0, proof); err != nil {
  600. t.Fatalf("Failed to prove the first node %v", err)
  601. }
  602. if err := trie.Prove(last, 0, proof); err != nil {
  603. t.Fatalf("Failed to prove the last node %v", err)
  604. }
  605. err, _ = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
  606. if err == nil {
  607. t.Fatalf("Expected error, got nil")
  608. }
  609. }
  610. func TestHasRightElement(t *testing.T) {
  611. trie := new(Trie)
  612. var entries entrySlice
  613. for i := 0; i < 4096; i++ {
  614. value := &kv{randBytes(32), randBytes(20), false}
  615. trie.Update(value.k, value.v)
  616. entries = append(entries, value)
  617. }
  618. sort.Sort(entries)
  619. var cases = []struct {
  620. start int
  621. end int
  622. hasMore bool
  623. }{
  624. {-1, 1, true}, // single element with non-existent left proof
  625. {0, 1, true}, // single element with existent left proof
  626. {0, 10, true},
  627. {50, 100, true},
  628. {50, len(entries), false}, // No more element expected
  629. {len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key)
  630. {len(entries) - 1, -1, false}, // Single last element with non-existent right proof
  631. {0, len(entries), false}, // The whole set with existent left proof
  632. {-1, len(entries), false}, // The whole set with non-existent left proof
  633. {-1, -1, false}, // The whole set with non-existent left/right proof
  634. }
  635. for _, c := range cases {
  636. var (
  637. firstKey []byte
  638. lastKey []byte
  639. start = c.start
  640. end = c.end
  641. proof = memorydb.New()
  642. )
  643. if c.start == -1 {
  644. firstKey, start = common.Hash{}.Bytes(), 0
  645. if err := trie.Prove(firstKey, 0, proof); err != nil {
  646. t.Fatalf("Failed to prove the first node %v", err)
  647. }
  648. } else {
  649. firstKey = entries[c.start].k
  650. if err := trie.Prove(entries[c.start].k, 0, proof); err != nil {
  651. t.Fatalf("Failed to prove the first node %v", err)
  652. }
  653. }
  654. if c.end == -1 {
  655. lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries)
  656. if err := trie.Prove(lastKey, 0, proof); err != nil {
  657. t.Fatalf("Failed to prove the first node %v", err)
  658. }
  659. } else {
  660. lastKey = entries[c.end-1].k
  661. if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil {
  662. t.Fatalf("Failed to prove the first node %v", err)
  663. }
  664. }
  665. k := make([][]byte, 0)
  666. v := make([][]byte, 0)
  667. for i := start; i < end; i++ {
  668. k = append(k, entries[i].k)
  669. v = append(v, entries[i].v)
  670. }
  671. err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
  672. if err != nil {
  673. t.Fatalf("Expected no error, got %v", err)
  674. }
  675. if hasMore != c.hasMore {
  676. t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
  677. }
  678. }
  679. }
  680. // TestEmptyRangeProof tests the range proof with "no" element.
  681. // The first edge proof must be a non-existent proof.
  682. func TestEmptyRangeProof(t *testing.T) {
  683. trie, vals := randomTrie(4096)
  684. var entries entrySlice
  685. for _, kv := range vals {
  686. entries = append(entries, kv)
  687. }
  688. sort.Sort(entries)
  689. var cases = []struct {
  690. pos int
  691. err bool
  692. }{
  693. {len(entries) - 1, false},
  694. {500, true},
  695. }
  696. for _, c := range cases {
  697. proof := memorydb.New()
  698. first := increseKey(common.CopyBytes(entries[c.pos].k))
  699. if err := trie.Prove(first, 0, proof); err != nil {
  700. t.Fatalf("Failed to prove the first node %v", err)
  701. }
  702. err, _ := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
  703. if c.err && err == nil {
  704. t.Fatalf("Expected error, got nil")
  705. }
  706. if !c.err && err != nil {
  707. t.Fatalf("Expected no error, got %v", err)
  708. }
  709. }
  710. }
  711. // mutateByte changes one byte in b.
  712. func mutateByte(b []byte) {
  713. for r := mrand.Intn(len(b)); ; {
  714. new := byte(mrand.Intn(255))
  715. if new != b[r] {
  716. b[r] = new
  717. break
  718. }
  719. }
  720. }
  721. func increseKey(key []byte) []byte {
  722. for i := len(key) - 1; i >= 0; i-- {
  723. key[i]++
  724. if key[i] != 0x0 {
  725. break
  726. }
  727. }
  728. return key
  729. }
  730. func decreseKey(key []byte) []byte {
  731. for i := len(key) - 1; i >= 0; i-- {
  732. key[i]--
  733. if key[i] != 0xff {
  734. break
  735. }
  736. }
  737. return key
  738. }
  739. func BenchmarkProve(b *testing.B) {
  740. trie, vals := randomTrie(100)
  741. var keys []string
  742. for k := range vals {
  743. keys = append(keys, k)
  744. }
  745. b.ResetTimer()
  746. for i := 0; i < b.N; i++ {
  747. kv := vals[keys[i%len(keys)]]
  748. proofs := memorydb.New()
  749. if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
  750. b.Fatalf("zero length proof for %x", kv.k)
  751. }
  752. }
  753. }
  754. func BenchmarkVerifyProof(b *testing.B) {
  755. trie, vals := randomTrie(100)
  756. root := trie.Hash()
  757. var keys []string
  758. var proofs []*memorydb.Database
  759. for k := range vals {
  760. keys = append(keys, k)
  761. proof := memorydb.New()
  762. trie.Prove([]byte(k), 0, proof)
  763. proofs = append(proofs, proof)
  764. }
  765. b.ResetTimer()
  766. for i := 0; i < b.N; i++ {
  767. im := i % len(keys)
  768. if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
  769. b.Fatalf("key %x: %v", keys[im], err)
  770. }
  771. }
  772. }
  773. func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
  774. func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
  775. func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
  776. func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
  777. func benchmarkVerifyRangeProof(b *testing.B, size int) {
  778. trie, vals := randomTrie(8192)
  779. var entries entrySlice
  780. for _, kv := range vals {
  781. entries = append(entries, kv)
  782. }
  783. sort.Sort(entries)
  784. start := 2
  785. end := start + size
  786. proof := memorydb.New()
  787. if err := trie.Prove(entries[start].k, 0, proof); err != nil {
  788. b.Fatalf("Failed to prove the first node %v", err)
  789. }
  790. if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
  791. b.Fatalf("Failed to prove the last node %v", err)
  792. }
  793. var keys [][]byte
  794. var values [][]byte
  795. for i := start; i < end; i++ {
  796. keys = append(keys, entries[i].k)
  797. values = append(values, entries[i].v)
  798. }
  799. b.ResetTimer()
  800. for i := 0; i < b.N; i++ {
  801. err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
  802. if err != nil {
  803. b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  804. }
  805. }
  806. }
  807. func randomTrie(n int) (*Trie, map[string]*kv) {
  808. trie := new(Trie)
  809. vals := make(map[string]*kv)
  810. for i := byte(0); i < 100; i++ {
  811. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  812. value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
  813. trie.Update(value.k, value.v)
  814. trie.Update(value2.k, value2.v)
  815. vals[string(value.k)] = value
  816. vals[string(value2.k)] = value2
  817. }
  818. for i := 0; i < n; i++ {
  819. value := &kv{randBytes(32), randBytes(20), false}
  820. trie.Update(value.k, value.v)
  821. vals[string(value.k)] = value
  822. }
  823. return trie, vals
  824. }
  825. func randBytes(n int) []byte {
  826. r := make([]byte, n)
  827. crand.Read(r)
  828. return r
  829. }