| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045 |
- // Copyright 2014 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package vm
- import (
- "crypto/sha256"
- "encoding/binary"
- "errors"
- "math/big"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/common/math"
- "github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/crypto/blake2b"
- "github.com/ethereum/go-ethereum/crypto/bls12381"
- "github.com/ethereum/go-ethereum/crypto/bn256"
- "github.com/ethereum/go-ethereum/params"
- //lint:ignore SA1019 Needed for precompile
- "golang.org/x/crypto/ripemd160"
- )
- // PrecompiledContract is the basic interface for native Go contracts. The implementation
- // requires a deterministic gas count based on the input size of the Run method of the
- // contract.
- type PrecompiledContract interface {
- RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
- Run(input []byte) ([]byte, error) // Run runs the precompiled contract
- }
- // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
- // contracts used in the Frontier and Homestead releases.
- var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- }
- // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
- // contracts used in the Byzantium release.
- var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
- common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
- common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
- common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
- }
- // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
- // contracts used in the Istanbul release.
- var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
- common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
- common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
- common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
- common.BytesToAddress([]byte{9}): &blake2F{},
- }
- // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
- // contracts used in the Berlin release.
- var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true},
- common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
- common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
- common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
- common.BytesToAddress([]byte{9}): &blake2F{},
- }
- // PrecompiledContractsBLS contains the set of pre-compiled Ethereum
- // contracts specified in EIP-2537. These are exported for testing purposes.
- var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{10}): &bls12381G1Add{},
- common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
- common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
- common.BytesToAddress([]byte{13}): &bls12381G2Add{},
- common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
- common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
- common.BytesToAddress([]byte{16}): &bls12381Pairing{},
- common.BytesToAddress([]byte{17}): &bls12381MapG1{},
- common.BytesToAddress([]byte{18}): &bls12381MapG2{},
- }
- var (
- PrecompiledAddressesBerlin []common.Address
- PrecompiledAddressesIstanbul []common.Address
- PrecompiledAddressesByzantium []common.Address
- PrecompiledAddressesHomestead []common.Address
- )
- func init() {
- for k := range PrecompiledContractsHomestead {
- PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
- }
- for k := range PrecompiledContractsByzantium {
- PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
- }
- for k := range PrecompiledContractsIstanbul {
- PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
- }
- for k := range PrecompiledContractsBerlin {
- PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
- }
- }
- // ActivePrecompiles returns the precompiles enabled with the current configuration.
- func ActivePrecompiles(rules params.Rules) []common.Address {
- switch {
- case rules.IsBerlin:
- return PrecompiledAddressesBerlin
- case rules.IsIstanbul:
- return PrecompiledAddressesIstanbul
- case rules.IsByzantium:
- return PrecompiledAddressesByzantium
- default:
- return PrecompiledAddressesHomestead
- }
- }
- // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
- // It returns
- // - the returned bytes,
- // - the _remaining_ gas,
- // - any error that occurred
- func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) {
- gasCost := p.RequiredGas(input)
- if suppliedGas < gasCost {
- return nil, 0, ErrOutOfGas
- }
- suppliedGas -= gasCost
- output, err := p.Run(input)
- return output, suppliedGas, err
- }
- // ECRECOVER implemented as a native contract.
- type ecrecover struct{}
- func (c *ecrecover) RequiredGas(input []byte) uint64 {
- return params.EcrecoverGas
- }
- func (c *ecrecover) Run(input []byte) ([]byte, error) {
- const ecRecoverInputLength = 128
- input = common.RightPadBytes(input, ecRecoverInputLength)
- // "input" is (hash, v, r, s), each 32 bytes
- // but for ecrecover we want (r, s, v)
- r := new(big.Int).SetBytes(input[64:96])
- s := new(big.Int).SetBytes(input[96:128])
- v := input[63] - 27
- // tighter sig s values input homestead only apply to tx sigs
- if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
- return nil, nil
- }
- // We must make sure not to modify the 'input', so placing the 'v' along with
- // the signature needs to be done on a new allocation
- sig := make([]byte, 65)
- copy(sig, input[64:128])
- sig[64] = v
- // v needs to be at the end for libsecp256k1
- pubKey, err := crypto.Ecrecover(input[:32], sig)
- // make sure the public key is a valid one
- if err != nil {
- return nil, nil
- }
- // the first byte of pubkey is bitcoin heritage
- return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
- }
- // SHA256 implemented as a native contract.
- type sha256hash struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *sha256hash) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
- }
- func (c *sha256hash) Run(input []byte) ([]byte, error) {
- h := sha256.Sum256(input)
- return h[:], nil
- }
- // RIPEMD160 implemented as a native contract.
- type ripemd160hash struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
- }
- func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
- ripemd := ripemd160.New()
- ripemd.Write(input)
- return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
- }
- // data copy implemented as a native contract.
- type dataCopy struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *dataCopy) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
- }
- func (c *dataCopy) Run(in []byte) ([]byte, error) {
- return in, nil
- }
- // bigModExp implements a native big integer exponential modular operation.
- type bigModExp struct {
- eip2565 bool
- }
- var (
- big0 = big.NewInt(0)
- big1 = big.NewInt(1)
- big3 = big.NewInt(3)
- big4 = big.NewInt(4)
- big7 = big.NewInt(7)
- big8 = big.NewInt(8)
- big16 = big.NewInt(16)
- big20 = big.NewInt(20)
- big32 = big.NewInt(32)
- big64 = big.NewInt(64)
- big96 = big.NewInt(96)
- big480 = big.NewInt(480)
- big1024 = big.NewInt(1024)
- big3072 = big.NewInt(3072)
- big199680 = big.NewInt(199680)
- )
- // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
- //
- // def mult_complexity(x):
- // if x <= 64: return x ** 2
- // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
- // else: return x ** 2 // 16 + 480 * x - 199680
- //
- // where is x is max(length_of_MODULUS, length_of_BASE)
- func modexpMultComplexity(x *big.Int) *big.Int {
- switch {
- case x.Cmp(big64) <= 0:
- x.Mul(x, x) // x ** 2
- case x.Cmp(big1024) <= 0:
- // (x ** 2 // 4 ) + ( 96 * x - 3072)
- x = new(big.Int).Add(
- new(big.Int).Div(new(big.Int).Mul(x, x), big4),
- new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
- )
- default:
- // (x ** 2 // 16) + (480 * x - 199680)
- x = new(big.Int).Add(
- new(big.Int).Div(new(big.Int).Mul(x, x), big16),
- new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
- )
- }
- return x
- }
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bigModExp) RequiredGas(input []byte) uint64 {
- var (
- baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
- expLen = new(big.Int).SetBytes(getData(input, 32, 32))
- modLen = new(big.Int).SetBytes(getData(input, 64, 32))
- )
- if len(input) > 96 {
- input = input[96:]
- } else {
- input = input[:0]
- }
- // Retrieve the head 32 bytes of exp for the adjusted exponent length
- var expHead *big.Int
- if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
- expHead = new(big.Int)
- } else {
- if expLen.Cmp(big32) > 0 {
- expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
- } else {
- expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
- }
- }
- // Calculate the adjusted exponent length
- var msb int
- if bitlen := expHead.BitLen(); bitlen > 0 {
- msb = bitlen - 1
- }
- adjExpLen := new(big.Int)
- if expLen.Cmp(big32) > 0 {
- adjExpLen.Sub(expLen, big32)
- adjExpLen.Mul(big8, adjExpLen)
- }
- adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
- // Calculate the gas cost of the operation
- gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
- if c.eip2565 {
- // EIP-2565 has three changes
- // 1. Different multComplexity (inlined here)
- // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
- //
- // def mult_complexity(x):
- // ceiling(x/8)^2
- //
- //where is x is max(length_of_MODULUS, length_of_BASE)
- gas = gas.Add(gas, big7)
- gas = gas.Div(gas, big8)
- gas.Mul(gas, gas)
- gas.Mul(gas, math.BigMax(adjExpLen, big1))
- // 2. Different divisor (`GQUADDIVISOR`) (3)
- gas.Div(gas, big3)
- if gas.BitLen() > 64 {
- return math.MaxUint64
- }
- // 3. Minimum price of 200 gas
- if gas.Uint64() < 200 {
- return 200
- }
- return gas.Uint64()
- }
- gas = modexpMultComplexity(gas)
- gas.Mul(gas, math.BigMax(adjExpLen, big1))
- gas.Div(gas, big20)
- if gas.BitLen() > 64 {
- return math.MaxUint64
- }
- return gas.Uint64()
- }
- func (c *bigModExp) Run(input []byte) ([]byte, error) {
- var (
- baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
- expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
- modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
- )
- if len(input) > 96 {
- input = input[96:]
- } else {
- input = input[:0]
- }
- // Handle a special case when both the base and mod length is zero
- if baseLen == 0 && modLen == 0 {
- return []byte{}, nil
- }
- // Retrieve the operands and execute the exponentiation
- var (
- base = new(big.Int).SetBytes(getData(input, 0, baseLen))
- exp = new(big.Int).SetBytes(getData(input, baseLen, expLen))
- mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
- )
- if mod.BitLen() == 0 {
- // Modulo 0 is undefined, return zero
- return common.LeftPadBytes([]byte{}, int(modLen)), nil
- }
- return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
- }
- // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
- // returning it, or an error if the point is invalid.
- func newCurvePoint(blob []byte) (*bn256.G1, error) {
- p := new(bn256.G1)
- if _, err := p.Unmarshal(blob); err != nil {
- return nil, err
- }
- return p, nil
- }
- // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
- // returning it, or an error if the point is invalid.
- func newTwistPoint(blob []byte) (*bn256.G2, error) {
- p := new(bn256.G2)
- if _, err := p.Unmarshal(blob); err != nil {
- return nil, err
- }
- return p, nil
- }
- // runBn256Add implements the Bn256Add precompile, referenced by both
- // Byzantium and Istanbul operations.
- func runBn256Add(input []byte) ([]byte, error) {
- x, err := newCurvePoint(getData(input, 0, 64))
- if err != nil {
- return nil, err
- }
- y, err := newCurvePoint(getData(input, 64, 64))
- if err != nil {
- return nil, err
- }
- res := new(bn256.G1)
- res.Add(x, y)
- return res.Marshal(), nil
- }
- // bn256Add implements a native elliptic curve point addition conforming to
- // Istanbul consensus rules.
- type bn256AddIstanbul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
- return params.Bn256AddGasIstanbul
- }
- func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
- return runBn256Add(input)
- }
- // bn256AddByzantium implements a native elliptic curve point addition
- // conforming to Byzantium consensus rules.
- type bn256AddByzantium struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
- return params.Bn256AddGasByzantium
- }
- func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
- return runBn256Add(input)
- }
- // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
- // both Byzantium and Istanbul operations.
- func runBn256ScalarMul(input []byte) ([]byte, error) {
- p, err := newCurvePoint(getData(input, 0, 64))
- if err != nil {
- return nil, err
- }
- res := new(bn256.G1)
- res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
- return res.Marshal(), nil
- }
- // bn256ScalarMulIstanbul implements a native elliptic curve scalar
- // multiplication conforming to Istanbul consensus rules.
- type bn256ScalarMulIstanbul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
- return params.Bn256ScalarMulGasIstanbul
- }
- func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
- return runBn256ScalarMul(input)
- }
- // bn256ScalarMulByzantium implements a native elliptic curve scalar
- // multiplication conforming to Byzantium consensus rules.
- type bn256ScalarMulByzantium struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
- return params.Bn256ScalarMulGasByzantium
- }
- func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
- return runBn256ScalarMul(input)
- }
- var (
- // true32Byte is returned if the bn256 pairing check succeeds.
- true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
- // false32Byte is returned if the bn256 pairing check fails.
- false32Byte = make([]byte, 32)
- // errBadPairingInput is returned if the bn256 pairing input is invalid.
- errBadPairingInput = errors.New("bad elliptic curve pairing size")
- )
- // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
- // Byzantium and Istanbul operations.
- func runBn256Pairing(input []byte) ([]byte, error) {
- // Handle some corner cases cheaply
- if len(input)%192 > 0 {
- return nil, errBadPairingInput
- }
- // Convert the input into a set of coordinates
- var (
- cs []*bn256.G1
- ts []*bn256.G2
- )
- for i := 0; i < len(input); i += 192 {
- c, err := newCurvePoint(input[i : i+64])
- if err != nil {
- return nil, err
- }
- t, err := newTwistPoint(input[i+64 : i+192])
- if err != nil {
- return nil, err
- }
- cs = append(cs, c)
- ts = append(ts, t)
- }
- // Execute the pairing checks and return the results
- if bn256.PairingCheck(cs, ts) {
- return true32Byte, nil
- }
- return false32Byte, nil
- }
- // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
- // conforming to Istanbul consensus rules.
- type bn256PairingIstanbul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
- return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
- }
- func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
- return runBn256Pairing(input)
- }
- // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
- // conforming to Byzantium consensus rules.
- type bn256PairingByzantium struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
- return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
- }
- func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
- return runBn256Pairing(input)
- }
- type blake2F struct{}
- func (c *blake2F) RequiredGas(input []byte) uint64 {
- // If the input is malformed, we can't calculate the gas, return 0 and let the
- // actual call choke and fault.
- if len(input) != blake2FInputLength {
- return 0
- }
- return uint64(binary.BigEndian.Uint32(input[0:4]))
- }
- const (
- blake2FInputLength = 213
- blake2FFinalBlockBytes = byte(1)
- blake2FNonFinalBlockBytes = byte(0)
- )
- var (
- errBlake2FInvalidInputLength = errors.New("invalid input length")
- errBlake2FInvalidFinalFlag = errors.New("invalid final flag")
- )
- func (c *blake2F) Run(input []byte) ([]byte, error) {
- // Make sure the input is valid (correct length and final flag)
- if len(input) != blake2FInputLength {
- return nil, errBlake2FInvalidInputLength
- }
- if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
- return nil, errBlake2FInvalidFinalFlag
- }
- // Parse the input into the Blake2b call parameters
- var (
- rounds = binary.BigEndian.Uint32(input[0:4])
- final = (input[212] == blake2FFinalBlockBytes)
- h [8]uint64
- m [16]uint64
- t [2]uint64
- )
- for i := 0; i < 8; i++ {
- offset := 4 + i*8
- h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
- }
- for i := 0; i < 16; i++ {
- offset := 68 + i*8
- m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
- }
- t[0] = binary.LittleEndian.Uint64(input[196:204])
- t[1] = binary.LittleEndian.Uint64(input[204:212])
- // Execute the compression function, extract and return the result
- blake2b.F(&h, m, t, final, rounds)
- output := make([]byte, 64)
- for i := 0; i < 8; i++ {
- offset := i * 8
- binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
- }
- return output, nil
- }
- var (
- errBLS12381InvalidInputLength = errors.New("invalid input length")
- errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
- errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup")
- errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup")
- )
- // bls12381G1Add implements EIP-2537 G1Add precompile.
- type bls12381G1Add struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
- return params.Bls12381G1AddGas
- }
- func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 G1Add precompile.
- // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
- // > Output is an encoding of addition operation result - single G1 point (`128` bytes).
- if len(input) != 256 {
- return nil, errBLS12381InvalidInputLength
- }
- var err error
- var p0, p1 *bls12381.PointG1
- // Initialize G1
- g := bls12381.NewG1()
- // Decode G1 point p_0
- if p0, err = g.DecodePoint(input[:128]); err != nil {
- return nil, err
- }
- // Decode G1 point p_1
- if p1, err = g.DecodePoint(input[128:]); err != nil {
- return nil, err
- }
- // Compute r = p_0 + p_1
- r := g.New()
- g.Add(r, p0, p1)
- // Encode the G1 point result into 128 bytes
- return g.EncodePoint(r), nil
- }
- // bls12381G1Mul implements EIP-2537 G1Mul precompile.
- type bls12381G1Mul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
- return params.Bls12381G1MulGas
- }
- func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 G1Mul precompile.
- // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
- // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
- if len(input) != 160 {
- return nil, errBLS12381InvalidInputLength
- }
- var err error
- var p0 *bls12381.PointG1
- // Initialize G1
- g := bls12381.NewG1()
- // Decode G1 point
- if p0, err = g.DecodePoint(input[:128]); err != nil {
- return nil, err
- }
- // Decode scalar value
- e := new(big.Int).SetBytes(input[128:])
- // Compute r = e * p_0
- r := g.New()
- g.MulScalar(r, p0, e)
- // Encode the G1 point into 128 bytes
- return g.EncodePoint(r), nil
- }
- // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
- type bls12381G1MultiExp struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
- // Calculate G1 point, scalar value pair length
- k := len(input) / 160
- if k == 0 {
- // Return 0 gas for small input length
- return 0
- }
- // Lookup discount value for G1 point, scalar value pair length
- var discount uint64
- if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
- discount = params.Bls12381MultiExpDiscountTable[k-1]
- } else {
- discount = params.Bls12381MultiExpDiscountTable[dLen-1]
- }
- // Calculate gas and return the result
- return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
- }
- func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 G1MultiExp precompile.
- // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
- // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
- k := len(input) / 160
- if len(input) == 0 || len(input)%160 != 0 {
- return nil, errBLS12381InvalidInputLength
- }
- var err error
- points := make([]*bls12381.PointG1, k)
- scalars := make([]*big.Int, k)
- // Initialize G1
- g := bls12381.NewG1()
- // Decode point scalar pairs
- for i := 0; i < k; i++ {
- off := 160 * i
- t0, t1, t2 := off, off+128, off+160
- // Decode G1 point
- if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
- return nil, err
- }
- // Decode scalar value
- scalars[i] = new(big.Int).SetBytes(input[t1:t2])
- }
- // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
- r := g.New()
- g.MultiExp(r, points, scalars)
- // Encode the G1 point to 128 bytes
- return g.EncodePoint(r), nil
- }
- // bls12381G2Add implements EIP-2537 G2Add precompile.
- type bls12381G2Add struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
- return params.Bls12381G2AddGas
- }
- func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 G2Add precompile.
- // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
- // > Output is an encoding of addition operation result - single G2 point (`256` bytes).
- if len(input) != 512 {
- return nil, errBLS12381InvalidInputLength
- }
- var err error
- var p0, p1 *bls12381.PointG2
- // Initialize G2
- g := bls12381.NewG2()
- r := g.New()
- // Decode G2 point p_0
- if p0, err = g.DecodePoint(input[:256]); err != nil {
- return nil, err
- }
- // Decode G2 point p_1
- if p1, err = g.DecodePoint(input[256:]); err != nil {
- return nil, err
- }
- // Compute r = p_0 + p_1
- g.Add(r, p0, p1)
- // Encode the G2 point into 256 bytes
- return g.EncodePoint(r), nil
- }
- // bls12381G2Mul implements EIP-2537 G2Mul precompile.
- type bls12381G2Mul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
- return params.Bls12381G2MulGas
- }
- func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 G2MUL precompile logic.
- // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
- // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
- if len(input) != 288 {
- return nil, errBLS12381InvalidInputLength
- }
- var err error
- var p0 *bls12381.PointG2
- // Initialize G2
- g := bls12381.NewG2()
- // Decode G2 point
- if p0, err = g.DecodePoint(input[:256]); err != nil {
- return nil, err
- }
- // Decode scalar value
- e := new(big.Int).SetBytes(input[256:])
- // Compute r = e * p_0
- r := g.New()
- g.MulScalar(r, p0, e)
- // Encode the G2 point into 256 bytes
- return g.EncodePoint(r), nil
- }
- // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
- type bls12381G2MultiExp struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
- // Calculate G2 point, scalar value pair length
- k := len(input) / 288
- if k == 0 {
- // Return 0 gas for small input length
- return 0
- }
- // Lookup discount value for G2 point, scalar value pair length
- var discount uint64
- if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
- discount = params.Bls12381MultiExpDiscountTable[k-1]
- } else {
- discount = params.Bls12381MultiExpDiscountTable[dLen-1]
- }
- // Calculate gas and return the result
- return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
- }
- func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 G2MultiExp precompile logic
- // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
- // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
- k := len(input) / 288
- if len(input) == 0 || len(input)%288 != 0 {
- return nil, errBLS12381InvalidInputLength
- }
- var err error
- points := make([]*bls12381.PointG2, k)
- scalars := make([]*big.Int, k)
- // Initialize G2
- g := bls12381.NewG2()
- // Decode point scalar pairs
- for i := 0; i < k; i++ {
- off := 288 * i
- t0, t1, t2 := off, off+256, off+288
- // Decode G1 point
- if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
- return nil, err
- }
- // Decode scalar value
- scalars[i] = new(big.Int).SetBytes(input[t1:t2])
- }
- // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
- r := g.New()
- g.MultiExp(r, points, scalars)
- // Encode the G2 point to 256 bytes.
- return g.EncodePoint(r), nil
- }
- // bls12381Pairing implements EIP-2537 Pairing precompile.
- type bls12381Pairing struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
- return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
- }
- func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 Pairing precompile logic.
- // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
- // > - `128` bytes of G1 point encoding
- // > - `256` bytes of G2 point encoding
- // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
- // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
- k := len(input) / 384
- if len(input) == 0 || len(input)%384 != 0 {
- return nil, errBLS12381InvalidInputLength
- }
- // Initialize BLS12-381 pairing engine
- e := bls12381.NewPairingEngine()
- g1, g2 := e.G1, e.G2
- // Decode pairs
- for i := 0; i < k; i++ {
- off := 384 * i
- t0, t1, t2 := off, off+128, off+384
- // Decode G1 point
- p1, err := g1.DecodePoint(input[t0:t1])
- if err != nil {
- return nil, err
- }
- // Decode G2 point
- p2, err := g2.DecodePoint(input[t1:t2])
- if err != nil {
- return nil, err
- }
- // 'point is on curve' check already done,
- // Here we need to apply subgroup checks.
- if !g1.InCorrectSubgroup(p1) {
- return nil, errBLS12381G1PointSubgroup
- }
- if !g2.InCorrectSubgroup(p2) {
- return nil, errBLS12381G2PointSubgroup
- }
- // Update pairing engine with G1 and G2 ponits
- e.AddPair(p1, p2)
- }
- // Prepare 32 byte output
- out := make([]byte, 32)
- // Compute pairing and set the result
- if e.Check() {
- out[31] = 1
- }
- return out, nil
- }
- // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
- // Removes top 16 bytes of 64 byte input.
- func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
- if len(in) != 64 {
- return nil, errors.New("invalid field element length")
- }
- // check top bytes
- for i := 0; i < 16; i++ {
- if in[i] != byte(0x00) {
- return nil, errBLS12381InvalidFieldElementTopBytes
- }
- }
- out := make([]byte, 48)
- copy(out[:], in[16:])
- return out, nil
- }
- // bls12381MapG1 implements EIP-2537 MapG1 precompile.
- type bls12381MapG1 struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
- return params.Bls12381MapG1Gas
- }
- func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 Map_To_G1 precompile.
- // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
- // > Output of this call is `128` bytes and is G1 point following respective encoding rules.
- if len(input) != 64 {
- return nil, errBLS12381InvalidInputLength
- }
- // Decode input field element
- fe, err := decodeBLS12381FieldElement(input)
- if err != nil {
- return nil, err
- }
- // Initialize G1
- g := bls12381.NewG1()
- // Compute mapping
- r, err := g.MapToCurve(fe)
- if err != nil {
- return nil, err
- }
- // Encode the G1 point to 128 bytes
- return g.EncodePoint(r), nil
- }
- // bls12381MapG2 implements EIP-2537 MapG2 precompile.
- type bls12381MapG2 struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
- return params.Bls12381MapG2Gas
- }
- func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
- // Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
- // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
- // > Output of this call is `256` bytes and is G2 point following respective encoding rules.
- if len(input) != 128 {
- return nil, errBLS12381InvalidInputLength
- }
- // Decode input field element
- fe := make([]byte, 96)
- c0, err := decodeBLS12381FieldElement(input[:64])
- if err != nil {
- return nil, err
- }
- copy(fe[48:], c0)
- c1, err := decodeBLS12381FieldElement(input[64:])
- if err != nil {
- return nil, err
- }
- copy(fe[:48], c1)
- // Initialize G2
- g := bls12381.NewG2()
- // Compute mapping
- r, err := g.MapToCurve(fe)
- if err != nil {
- return nil, err
- }
- // Encode the G2 point to 256 bytes
- return g.EncodePoint(r), nil
- }
|