| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539 |
- // Copyright (c) 2013-2017 The btcsuite developers
- // Use of this source code is governed by an ISC
- // license that can be found in the LICENSE file.
- package btcec
- import (
- "bytes"
- "crypto/ecdsa"
- "crypto/elliptic"
- "crypto/hmac"
- "crypto/sha256"
- "errors"
- "fmt"
- "hash"
- "math/big"
- )
- // Errors returned by canonicalPadding.
- var (
- errNegativeValue = errors.New("value may be interpreted as negative")
- errExcessivelyPaddedValue = errors.New("value is excessively padded")
- )
- // Signature is a type representing an ecdsa signature.
- type Signature struct {
- R *big.Int
- S *big.Int
- }
- var (
- // Curve order and halforder, used to tame ECDSA malleability (see BIP-0062)
- order = new(big.Int).Set(S256().N)
- halforder = new(big.Int).Rsh(order, 1)
- // Used in RFC6979 implementation when testing the nonce for correctness
- one = big.NewInt(1)
- // oneInitializer is used to fill a byte slice with byte 0x01. It is provided
- // here to avoid the need to create it multiple times.
- oneInitializer = []byte{0x01}
- )
- // Serialize returns the ECDSA signature in the more strict DER format. Note
- // that the serialized bytes returned do not include the appended hash type
- // used in Bitcoin signature scripts.
- //
- // encoding/asn1 is broken so we hand roll this output:
- //
- // 0x30 <length> 0x02 <length r> r 0x02 <length s> s
- func (sig *Signature) Serialize() []byte {
- // low 'S' malleability breaker
- sigS := sig.S
- if sigS.Cmp(halforder) == 1 {
- sigS = new(big.Int).Sub(order, sigS)
- }
- // Ensure the encoded bytes for the r and s values are canonical and
- // thus suitable for DER encoding.
- rb := canonicalizeInt(sig.R)
- sb := canonicalizeInt(sigS)
- // total length of returned signature is 1 byte for each magic and
- // length (6 total), plus lengths of r and s
- length := 6 + len(rb) + len(sb)
- b := make([]byte, length, length)
- b[0] = 0x30
- b[1] = byte(length - 2)
- b[2] = 0x02
- b[3] = byte(len(rb))
- offset := copy(b[4:], rb) + 4
- b[offset] = 0x02
- b[offset+1] = byte(len(sb))
- copy(b[offset+2:], sb)
- return b
- }
- // Verify calls ecdsa.Verify to verify the signature of hash using the public
- // key. It returns true if the signature is valid, false otherwise.
- func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool {
- return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S)
- }
- // IsEqual compares this Signature instance to the one passed, returning true
- // if both Signatures are equivalent. A signature is equivalent to another, if
- // they both have the same scalar value for R and S.
- func (sig *Signature) IsEqual(otherSig *Signature) bool {
- return sig.R.Cmp(otherSig.R) == 0 &&
- sig.S.Cmp(otherSig.S) == 0
- }
- func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) {
- // Originally this code used encoding/asn1 in order to parse the
- // signature, but a number of problems were found with this approach.
- // Despite the fact that signatures are stored as DER, the difference
- // between go's idea of a bignum (and that they have sign) doesn't agree
- // with the openssl one (where they do not). The above is true as of
- // Go 1.1. In the end it was simpler to rewrite the code to explicitly
- // understand the format which is this:
- // 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
- // <length of S> <S>.
- signature := &Signature{}
- // minimal message is when both numbers are 1 bytes. adding up to:
- // 0x30 + len + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
- if len(sigStr) < 8 {
- return nil, errors.New("malformed signature: too short")
- }
- // 0x30
- index := 0
- if sigStr[index] != 0x30 {
- return nil, errors.New("malformed signature: no header magic")
- }
- index++
- // length of remaining message
- siglen := sigStr[index]
- index++
- if int(siglen+2) > len(sigStr) {
- return nil, errors.New("malformed signature: bad length")
- }
- // trim the slice we're working on so we only look at what matters.
- sigStr = sigStr[:siglen+2]
- // 0x02
- if sigStr[index] != 0x02 {
- return nil,
- errors.New("malformed signature: no 1st int marker")
- }
- index++
- // Length of signature R.
- rLen := int(sigStr[index])
- // must be positive, must be able to fit in another 0x2, <len> <s>
- // hence the -3. We assume that the length must be at least one byte.
- index++
- if rLen <= 0 || rLen > len(sigStr)-index-3 {
- return nil, errors.New("malformed signature: bogus R length")
- }
- // Then R itself.
- rBytes := sigStr[index : index+rLen]
- if der {
- switch err := canonicalPadding(rBytes); err {
- case errNegativeValue:
- return nil, errors.New("signature R is negative")
- case errExcessivelyPaddedValue:
- return nil, errors.New("signature R is excessively padded")
- }
- }
- signature.R = new(big.Int).SetBytes(rBytes)
- index += rLen
- // 0x02. length already checked in previous if.
- if sigStr[index] != 0x02 {
- return nil, errors.New("malformed signature: no 2nd int marker")
- }
- index++
- // Length of signature S.
- sLen := int(sigStr[index])
- index++
- // S should be the rest of the string.
- if sLen <= 0 || sLen > len(sigStr)-index {
- return nil, errors.New("malformed signature: bogus S length")
- }
- // Then S itself.
- sBytes := sigStr[index : index+sLen]
- if der {
- switch err := canonicalPadding(sBytes); err {
- case errNegativeValue:
- return nil, errors.New("signature S is negative")
- case errExcessivelyPaddedValue:
- return nil, errors.New("signature S is excessively padded")
- }
- }
- signature.S = new(big.Int).SetBytes(sBytes)
- index += sLen
- // sanity check length parsing
- if index != len(sigStr) {
- return nil, fmt.Errorf("malformed signature: bad final length %v != %v",
- index, len(sigStr))
- }
- // Verify also checks this, but we can be more sure that we parsed
- // correctly if we verify here too.
- // FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
- // but crypto/ecdsa only checks for Sign != 0. Mirror that.
- if signature.R.Sign() != 1 {
- return nil, errors.New("signature R isn't 1 or more")
- }
- if signature.S.Sign() != 1 {
- return nil, errors.New("signature S isn't 1 or more")
- }
- if signature.R.Cmp(curve.Params().N) >= 0 {
- return nil, errors.New("signature R is >= curve.N")
- }
- if signature.S.Cmp(curve.Params().N) >= 0 {
- return nil, errors.New("signature S is >= curve.N")
- }
- return signature, nil
- }
- // ParseSignature parses a signature in BER format for the curve type `curve'
- // into a Signature type, perfoming some basic sanity checks. If parsing
- // according to the more strict DER format is needed, use ParseDERSignature.
- func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
- return parseSig(sigStr, curve, false)
- }
- // ParseDERSignature parses a signature in DER format for the curve type
- // `curve` into a Signature type. If parsing according to the less strict
- // BER format is needed, use ParseSignature.
- func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
- return parseSig(sigStr, curve, true)
- }
- // canonicalizeInt returns the bytes for the passed big integer adjusted as
- // necessary to ensure that a big-endian encoded integer can't possibly be
- // misinterpreted as a negative number. This can happen when the most
- // significant bit is set, so it is padded by a leading zero byte in this case.
- // Also, the returned bytes will have at least a single byte when the passed
- // value is 0. This is required for DER encoding.
- func canonicalizeInt(val *big.Int) []byte {
- b := val.Bytes()
- if len(b) == 0 {
- b = []byte{0x00}
- }
- if b[0]&0x80 != 0 {
- paddedBytes := make([]byte, len(b)+1)
- copy(paddedBytes[1:], b)
- b = paddedBytes
- }
- return b
- }
- // canonicalPadding checks whether a big-endian encoded integer could
- // possibly be misinterpreted as a negative number (even though OpenSSL
- // treats all numbers as unsigned), or if there is any unnecessary
- // leading zero padding.
- func canonicalPadding(b []byte) error {
- switch {
- case b[0]&0x80 == 0x80:
- return errNegativeValue
- case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80:
- return errExcessivelyPaddedValue
- default:
- return nil
- }
- }
- // hashToInt converts a hash value to an integer. There is some disagreement
- // about how this is done. [NSA] suggests that this is done in the obvious
- // manner, but [SECG] truncates the hash to the bit-length of the curve order
- // first. We follow [SECG] because that's what OpenSSL does. Additionally,
- // OpenSSL right shifts excess bits from the number if the hash is too large
- // and we mirror that too.
- // This is borrowed from crypto/ecdsa.
- func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
- orderBits := c.Params().N.BitLen()
- orderBytes := (orderBits + 7) / 8
- if len(hash) > orderBytes {
- hash = hash[:orderBytes]
- }
- ret := new(big.Int).SetBytes(hash)
- excess := len(hash)*8 - orderBits
- if excess > 0 {
- ret.Rsh(ret, uint(excess))
- }
- return ret
- }
- // recoverKeyFromSignature recoves a public key from the signature "sig" on the
- // given message hash "msg". Based on the algorithm found in section 5.1.5 of
- // SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details
- // in the inner loop in Step 1. The counter provided is actually the j parameter
- // of the loop * 2 - on the first iteration of j we do the R case, else the -R
- // case in step 1.6. This counter is used in the bitcoin compressed signature
- // format and thus we match bitcoind's behaviour here.
- func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte,
- iter int, doChecks bool) (*PublicKey, error) {
- // 1.1 x = (n * i) + r
- Rx := new(big.Int).Mul(curve.Params().N,
- new(big.Int).SetInt64(int64(iter/2)))
- Rx.Add(Rx, sig.R)
- if Rx.Cmp(curve.Params().P) != -1 {
- return nil, errors.New("calculated Rx is larger than curve P")
- }
- // convert 02<Rx> to point R. (step 1.2 and 1.3). If we are on an odd
- // iteration then 1.6 will be done with -R, so we calculate the other
- // term when uncompressing the point.
- Ry, err := decompressPoint(curve, Rx, iter%2 == 1)
- if err != nil {
- return nil, err
- }
- // 1.4 Check n*R is point at infinity
- if doChecks {
- nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes())
- if nRx.Sign() != 0 || nRy.Sign() != 0 {
- return nil, errors.New("n*R does not equal the point at infinity")
- }
- }
- // 1.5 calculate e from message using the same algorithm as ecdsa
- // signature calculation.
- e := hashToInt(msg, curve)
- // Step 1.6.1:
- // We calculate the two terms sR and eG separately multiplied by the
- // inverse of r (from the signature). We then add them to calculate
- // Q = r^-1(sR-eG)
- invr := new(big.Int).ModInverse(sig.R, curve.Params().N)
- // first term.
- invrS := new(big.Int).Mul(invr, sig.S)
- invrS.Mod(invrS, curve.Params().N)
- sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes())
- // second term.
- e.Neg(e)
- e.Mod(e, curve.Params().N)
- e.Mul(e, invr)
- e.Mod(e, curve.Params().N)
- minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes())
- // TODO: this would be faster if we did a mult and add in one
- // step to prevent the jacobian conversion back and forth.
- Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy)
- return &PublicKey{
- Curve: curve,
- X: Qx,
- Y: Qy,
- }, nil
- }
- // SignCompact produces a compact signature of the data in hash with the given
- // private key on the given koblitz curve. The isCompressed parameter should
- // be used to detail if the given signature should reference a compressed
- // public key or not. If successful the bytes of the compact signature will be
- // returned in the format:
- // <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S>
- // where the R and S parameters are padde up to the bitlengh of the curve.
- func SignCompact(curve *KoblitzCurve, key *PrivateKey,
- hash []byte, isCompressedKey bool) ([]byte, error) {
- sig, err := key.Sign(hash)
- if err != nil {
- return nil, err
- }
- // bitcoind checks the bit length of R and S here. The ecdsa signature
- // algorithm returns R and S mod N therefore they will be the bitsize of
- // the curve, and thus correctly sized.
- for i := 0; i < (curve.H+1)*2; i++ {
- pk, err := recoverKeyFromSignature(curve, sig, hash, i, true)
- if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 {
- result := make([]byte, 1, 2*curve.byteSize+1)
- result[0] = 27 + byte(i)
- if isCompressedKey {
- result[0] += 4
- }
- // Not sure this needs rounding but safer to do so.
- curvelen := (curve.BitSize + 7) / 8
- // Pad R and S to curvelen if needed.
- bytelen := (sig.R.BitLen() + 7) / 8
- if bytelen < curvelen {
- result = append(result,
- make([]byte, curvelen-bytelen)...)
- }
- result = append(result, sig.R.Bytes()...)
- bytelen = (sig.S.BitLen() + 7) / 8
- if bytelen < curvelen {
- result = append(result,
- make([]byte, curvelen-bytelen)...)
- }
- result = append(result, sig.S.Bytes()...)
- return result, nil
- }
- }
- return nil, errors.New("no valid solution for pubkey found")
- }
- // RecoverCompact verifies the compact signature "signature" of "hash" for the
- // Koblitz curve in "curve". If the signature matches then the recovered public
- // key will be returned as well as a boolen if the original key was compressed
- // or not, else an error will be returned.
- func RecoverCompact(curve *KoblitzCurve, signature,
- hash []byte) (*PublicKey, bool, error) {
- bitlen := (curve.BitSize + 7) / 8
- if len(signature) != 1+bitlen*2 {
- return nil, false, errors.New("invalid compact signature size")
- }
- iteration := int((signature[0] - 27) & ^byte(4))
- // format is <header byte><bitlen R><bitlen S>
- sig := &Signature{
- R: new(big.Int).SetBytes(signature[1 : bitlen+1]),
- S: new(big.Int).SetBytes(signature[bitlen+1:]),
- }
- // The iteration used here was encoded
- key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false)
- if err != nil {
- return nil, false, err
- }
- return key, ((signature[0] - 27) & 4) == 4, nil
- }
- // signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62.
- func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) {
- privkey := privateKey.ToECDSA()
- N := order
- k := nonceRFC6979(privkey.D, hash)
- inv := new(big.Int).ModInverse(k, N)
- r, _ := privkey.Curve.ScalarBaseMult(k.Bytes())
- if r.Cmp(N) == 1 {
- r.Sub(r, N)
- }
- if r.Sign() == 0 {
- return nil, errors.New("calculated R is zero")
- }
- e := hashToInt(hash, privkey.Curve)
- s := new(big.Int).Mul(privkey.D, r)
- s.Add(s, e)
- s.Mul(s, inv)
- s.Mod(s, N)
- if s.Cmp(halforder) == 1 {
- s.Sub(N, s)
- }
- if s.Sign() == 0 {
- return nil, errors.New("calculated S is zero")
- }
- return &Signature{R: r, S: s}, nil
- }
- // nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979.
- // It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm.
- func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int {
- curve := S256()
- q := curve.Params().N
- x := privkey
- alg := sha256.New
- qlen := q.BitLen()
- holen := alg().Size()
- rolen := (qlen + 7) >> 3
- bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...)
- // Step B
- v := bytes.Repeat(oneInitializer, holen)
- // Step C (Go zeroes the all allocated memory)
- k := make([]byte, holen)
- // Step D
- k = mac(alg, k, append(append(v, 0x00), bx...))
- // Step E
- v = mac(alg, k, v)
- // Step F
- k = mac(alg, k, append(append(v, 0x01), bx...))
- // Step G
- v = mac(alg, k, v)
- // Step H
- for {
- // Step H1
- var t []byte
- // Step H2
- for len(t)*8 < qlen {
- v = mac(alg, k, v)
- t = append(t, v...)
- }
- // Step H3
- secret := hashToInt(t, curve)
- if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 {
- return secret
- }
- k = mac(alg, k, append(v, 0x00))
- v = mac(alg, k, v)
- }
- }
- // mac returns an HMAC of the given key and message.
- func mac(alg func() hash.Hash, k, m []byte) []byte {
- h := hmac.New(alg, k)
- h.Write(m)
- return h.Sum(nil)
- }
- // https://tools.ietf.org/html/rfc6979#section-2.3.3
- func int2octets(v *big.Int, rolen int) []byte {
- out := v.Bytes()
- // left pad with zeros if it's too short
- if len(out) < rolen {
- out2 := make([]byte, rolen)
- copy(out2[rolen-len(out):], out)
- return out2
- }
- // drop most significant bytes if it's too long
- if len(out) > rolen {
- out2 := make([]byte, rolen)
- copy(out2, out[len(out)-rolen:])
- return out2
- }
- return out
- }
- // https://tools.ietf.org/html/rfc6979#section-2.3.4
- func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte {
- z1 := hashToInt(in, curve)
- z2 := new(big.Int).Sub(z1, curve.Params().N)
- if z2.Sign() < 0 {
- return int2octets(z1, rolen)
- }
- return int2octets(z2, rolen)
- }
|