btcec.go 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956
  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Copyright 2011 ThePiachu. All rights reserved.
  3. // Copyright 2013-2014 The btcsuite developers
  4. // Use of this source code is governed by an ISC
  5. // license that can be found in the LICENSE file.
  6. package btcec
  7. // References:
  8. // [SECG]: Recommended Elliptic Curve Domain Parameters
  9. // http://www.secg.org/sec2-v2.pdf
  10. //
  11. // [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
  12. // This package operates, internally, on Jacobian coordinates. For a given
  13. // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
  14. // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
  15. // calculation can be performed within the transform (as in ScalarMult and
  16. // ScalarBaseMult). But even for Add and Double, it's faster to apply and
  17. // reverse the transform than to operate in affine coordinates.
  18. import (
  19. "crypto/elliptic"
  20. "math/big"
  21. "sync"
  22. )
  23. var (
  24. // fieldOne is simply the integer 1 in field representation. It is
  25. // used to avoid needing to create it multiple times during the internal
  26. // arithmetic.
  27. fieldOne = new(fieldVal).SetInt(1)
  28. )
  29. // KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
  30. // interface from crypto/elliptic.
  31. type KoblitzCurve struct {
  32. *elliptic.CurveParams
  33. q *big.Int
  34. H int // cofactor of the curve.
  35. // byteSize is simply the bit size / 8 and is provided for convenience
  36. // since it is calculated repeatedly.
  37. byteSize int
  38. // bytePoints
  39. bytePoints *[32][256][3]fieldVal
  40. // The next 6 values are used specifically for endomorphism
  41. // optimizations in ScalarMult.
  42. // lambda must fulfill lambda^3 = 1 mod N where N is the order of G.
  43. lambda *big.Int
  44. // beta must fulfill beta^3 = 1 mod P where P is the prime field of the
  45. // curve.
  46. beta *fieldVal
  47. // See the EndomorphismVectors in gensecp256k1.go to see how these are
  48. // derived.
  49. a1 *big.Int
  50. b1 *big.Int
  51. a2 *big.Int
  52. b2 *big.Int
  53. }
  54. // Params returns the parameters for the curve.
  55. func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
  56. return curve.CurveParams
  57. }
  58. // bigAffineToField takes an affine point (x, y) as big integers and converts
  59. // it to an affine point as field values.
  60. func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
  61. x3, y3 := new(fieldVal), new(fieldVal)
  62. x3.SetByteSlice(x.Bytes())
  63. y3.SetByteSlice(y.Bytes())
  64. return x3, y3
  65. }
  66. // fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
  67. // converts it to an affine point as big integers.
  68. func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
  69. // Inversions are expensive and both point addition and point doubling
  70. // are faster when working with points that have a z value of one. So,
  71. // if the point needs to be converted to affine, go ahead and normalize
  72. // the point itself at the same time as the calculation is the same.
  73. var zInv, tempZ fieldVal
  74. zInv.Set(z).Inverse() // zInv = Z^-1
  75. tempZ.SquareVal(&zInv) // tempZ = Z^-2
  76. x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
  77. y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
  78. z.SetInt(1) // Z = 1 (mag: 1)
  79. // Normalize the x and y values.
  80. x.Normalize()
  81. y.Normalize()
  82. // Convert the field values for the now affine point to big.Ints.
  83. x3, y3 := new(big.Int), new(big.Int)
  84. x3.SetBytes(x.Bytes()[:])
  85. y3.SetBytes(y.Bytes()[:])
  86. return x3, y3
  87. }
  88. // IsOnCurve returns boolean if the point (x,y) is on the curve.
  89. // Part of the elliptic.Curve interface. This function differs from the
  90. // crypto/elliptic algorithm since a = 0 not -3.
  91. func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
  92. // Convert big ints to field values for faster arithmetic.
  93. fx, fy := curve.bigAffineToField(x, y)
  94. // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
  95. y2 := new(fieldVal).SquareVal(fy).Normalize()
  96. result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
  97. return y2.Equals(result)
  98. }
  99. // addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
  100. // z values of 1 and stores the result in (x3, y3, z3). That is to say
  101. // (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
  102. // the generic add routine since less arithmetic is needed due to the ability to
  103. // avoid the z value multiplications.
  104. func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
  105. // To compute the point addition efficiently, this implementation splits
  106. // the equation into intermediate elements which are used to minimize
  107. // the number of field multiplications using the method shown at:
  108. // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
  109. //
  110. // In particular it performs the calculations using the following:
  111. // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
  112. // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
  113. //
  114. // This results in a cost of 4 field multiplications, 2 field squarings,
  115. // 6 field additions, and 5 integer multiplications.
  116. // When the x coordinates are the same for two points on the curve, the
  117. // y coordinates either must be the same, in which case it is point
  118. // doubling, or they are opposite and the result is the point at
  119. // infinity per the group law for elliptic curve cryptography.
  120. x1.Normalize()
  121. y1.Normalize()
  122. x2.Normalize()
  123. y2.Normalize()
  124. if x1.Equals(x2) {
  125. if y1.Equals(y2) {
  126. // Since x1 == x2 and y1 == y2, point doubling must be
  127. // done, otherwise the addition would end up dividing
  128. // by zero.
  129. curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
  130. return
  131. }
  132. // Since x1 == x2 and y1 == -y2, the sum is the point at
  133. // infinity per the group law.
  134. x3.SetInt(0)
  135. y3.SetInt(0)
  136. z3.SetInt(0)
  137. return
  138. }
  139. // Calculate X3, Y3, and Z3 according to the intermediate elements
  140. // breakdown above.
  141. var h, i, j, r, v fieldVal
  142. var negJ, neg2V, negX3 fieldVal
  143. h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
  144. i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
  145. j.Mul2(&h, &i) // J = H*I (mag: 1)
  146. r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
  147. v.Mul2(x1, &i) // V = X1*I (mag: 1)
  148. negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
  149. neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
  150. x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
  151. negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
  152. j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
  153. y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
  154. z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
  155. // Normalize the resulting field values to a magnitude of 1 as needed.
  156. x3.Normalize()
  157. y3.Normalize()
  158. z3.Normalize()
  159. }
  160. // addZ1EqualsZ2 adds two Jacobian points that are already known to have the
  161. // same z value and stores the result in (x3, y3, z3). That is to say
  162. // (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
  163. // the generic add routine since less arithmetic is needed due to the known
  164. // equivalence.
  165. func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
  166. // To compute the point addition efficiently, this implementation splits
  167. // the equation into intermediate elements which are used to minimize
  168. // the number of field multiplications using a slightly modified version
  169. // of the method shown at:
  170. // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
  171. //
  172. // In particular it performs the calculations using the following:
  173. // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
  174. // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
  175. //
  176. // This results in a cost of 5 field multiplications, 2 field squarings,
  177. // 9 field additions, and 0 integer multiplications.
  178. // When the x coordinates are the same for two points on the curve, the
  179. // y coordinates either must be the same, in which case it is point
  180. // doubling, or they are opposite and the result is the point at
  181. // infinity per the group law for elliptic curve cryptography.
  182. x1.Normalize()
  183. y1.Normalize()
  184. x2.Normalize()
  185. y2.Normalize()
  186. if x1.Equals(x2) {
  187. if y1.Equals(y2) {
  188. // Since x1 == x2 and y1 == y2, point doubling must be
  189. // done, otherwise the addition would end up dividing
  190. // by zero.
  191. curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
  192. return
  193. }
  194. // Since x1 == x2 and y1 == -y2, the sum is the point at
  195. // infinity per the group law.
  196. x3.SetInt(0)
  197. y3.SetInt(0)
  198. z3.SetInt(0)
  199. return
  200. }
  201. // Calculate X3, Y3, and Z3 according to the intermediate elements
  202. // breakdown above.
  203. var a, b, c, d, e, f fieldVal
  204. var negX1, negY1, negE, negX3 fieldVal
  205. negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
  206. negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
  207. a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
  208. b.SquareVal(&a) // B = A^2 (mag: 1)
  209. c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
  210. d.SquareVal(&c) // D = C^2 (mag: 1)
  211. e.Mul2(x1, &b) // E = X1*B (mag: 1)
  212. negE.Set(&e).Negate(1) // negE = -E (mag: 2)
  213. f.Mul2(x2, &b) // F = X2*B (mag: 1)
  214. x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
  215. negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
  216. y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
  217. y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
  218. z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
  219. // Normalize the resulting field values to a magnitude of 1 as needed.
  220. x3.Normalize()
  221. y3.Normalize()
  222. }
  223. // addZ2EqualsOne adds two Jacobian points when the second point is already
  224. // known to have a z value of 1 (and the z value for the first point is not 1)
  225. // and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
  226. // (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
  227. // add routine since less arithmetic is needed due to the ability to avoid
  228. // multiplications by the second point's z value.
  229. func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
  230. // To compute the point addition efficiently, this implementation splits
  231. // the equation into intermediate elements which are used to minimize
  232. // the number of field multiplications using the method shown at:
  233. // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
  234. //
  235. // In particular it performs the calculations using the following:
  236. // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
  237. // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
  238. // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
  239. //
  240. // This results in a cost of 7 field multiplications, 4 field squarings,
  241. // 9 field additions, and 4 integer multiplications.
  242. // When the x coordinates are the same for two points on the curve, the
  243. // y coordinates either must be the same, in which case it is point
  244. // doubling, or they are opposite and the result is the point at
  245. // infinity per the group law for elliptic curve cryptography. Since
  246. // any number of Jacobian coordinates can represent the same affine
  247. // point, the x and y values need to be converted to like terms. Due to
  248. // the assumption made for this function that the second point has a z
  249. // value of 1 (z2=1), the first point is already "converted".
  250. var z1z1, u2, s2 fieldVal
  251. x1.Normalize()
  252. y1.Normalize()
  253. z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
  254. u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
  255. s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
  256. if x1.Equals(&u2) {
  257. if y1.Equals(&s2) {
  258. // Since x1 == x2 and y1 == y2, point doubling must be
  259. // done, otherwise the addition would end up dividing
  260. // by zero.
  261. curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
  262. return
  263. }
  264. // Since x1 == x2 and y1 == -y2, the sum is the point at
  265. // infinity per the group law.
  266. x3.SetInt(0)
  267. y3.SetInt(0)
  268. z3.SetInt(0)
  269. return
  270. }
  271. // Calculate X3, Y3, and Z3 according to the intermediate elements
  272. // breakdown above.
  273. var h, hh, i, j, r, rr, v fieldVal
  274. var negX1, negY1, negX3 fieldVal
  275. negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
  276. h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
  277. hh.SquareVal(&h) // HH = H^2 (mag: 1)
  278. i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
  279. j.Mul2(&h, &i) // J = H*I (mag: 1)
  280. negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
  281. r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
  282. rr.SquareVal(&r) // rr = r^2 (mag: 1)
  283. v.Mul2(x1, &i) // V = X1*I (mag: 1)
  284. x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
  285. x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
  286. negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
  287. y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
  288. y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
  289. z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
  290. z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
  291. // Normalize the resulting field values to a magnitude of 1 as needed.
  292. x3.Normalize()
  293. y3.Normalize()
  294. z3.Normalize()
  295. }
  296. // addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
  297. // assumptions about the z values of the two points and stores the result in
  298. // (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
  299. // is the slowest of the add routines due to requiring the most arithmetic.
  300. func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
  301. // To compute the point addition efficiently, this implementation splits
  302. // the equation into intermediate elements which are used to minimize
  303. // the number of field multiplications using the method shown at:
  304. // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
  305. //
  306. // In particular it performs the calculations using the following:
  307. // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
  308. // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
  309. // V = U1*I
  310. // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
  311. //
  312. // This results in a cost of 11 field multiplications, 5 field squarings,
  313. // 9 field additions, and 4 integer multiplications.
  314. // When the x coordinates are the same for two points on the curve, the
  315. // y coordinates either must be the same, in which case it is point
  316. // doubling, or they are opposite and the result is the point at
  317. // infinity. Since any number of Jacobian coordinates can represent the
  318. // same affine point, the x and y values need to be converted to like
  319. // terms.
  320. var z1z1, z2z2, u1, u2, s1, s2 fieldVal
  321. z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
  322. z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
  323. u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
  324. u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
  325. s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
  326. s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
  327. if u1.Equals(&u2) {
  328. if s1.Equals(&s2) {
  329. // Since x1 == x2 and y1 == y2, point doubling must be
  330. // done, otherwise the addition would end up dividing
  331. // by zero.
  332. curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
  333. return
  334. }
  335. // Since x1 == x2 and y1 == -y2, the sum is the point at
  336. // infinity per the group law.
  337. x3.SetInt(0)
  338. y3.SetInt(0)
  339. z3.SetInt(0)
  340. return
  341. }
  342. // Calculate X3, Y3, and Z3 according to the intermediate elements
  343. // breakdown above.
  344. var h, i, j, r, rr, v fieldVal
  345. var negU1, negS1, negX3 fieldVal
  346. negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
  347. h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
  348. i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
  349. j.Mul2(&h, &i) // J = H*I (mag: 1)
  350. negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
  351. r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
  352. rr.SquareVal(&r) // rr = r^2 (mag: 1)
  353. v.Mul2(&u1, &i) // V = U1*I (mag: 1)
  354. x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
  355. x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
  356. negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
  357. y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
  358. y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
  359. z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
  360. z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
  361. z3.Mul(&h) // Z3 = Z3*H (mag: 1)
  362. // Normalize the resulting field values to a magnitude of 1 as needed.
  363. x3.Normalize()
  364. y3.Normalize()
  365. }
  366. // addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
  367. // together and stores the result in (x3, y3, z3).
  368. func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
  369. // A point at infinity is the identity according to the group law for
  370. // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
  371. if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
  372. x3.Set(x2)
  373. y3.Set(y2)
  374. z3.Set(z2)
  375. return
  376. }
  377. if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
  378. x3.Set(x1)
  379. y3.Set(y1)
  380. z3.Set(z1)
  381. return
  382. }
  383. // Faster point addition can be achieved when certain assumptions are
  384. // met. For example, when both points have the same z value, arithmetic
  385. // on the z values can be avoided. This section thus checks for these
  386. // conditions and calls an appropriate add function which is accelerated
  387. // by using those assumptions.
  388. z1.Normalize()
  389. z2.Normalize()
  390. isZ1One := z1.Equals(fieldOne)
  391. isZ2One := z2.Equals(fieldOne)
  392. switch {
  393. case isZ1One && isZ2One:
  394. curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
  395. return
  396. case z1.Equals(z2):
  397. curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
  398. return
  399. case isZ2One:
  400. curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
  401. return
  402. }
  403. // None of the above assumptions are true, so fall back to generic
  404. // point addition.
  405. curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
  406. }
  407. // Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
  408. // interface.
  409. func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
  410. // A point at infinity is the identity according to the group law for
  411. // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
  412. if x1.Sign() == 0 && y1.Sign() == 0 {
  413. return x2, y2
  414. }
  415. if x2.Sign() == 0 && y2.Sign() == 0 {
  416. return x1, y1
  417. }
  418. // Convert the affine coordinates from big integers to field values
  419. // and do the point addition in Jacobian projective space.
  420. fx1, fy1 := curve.bigAffineToField(x1, y1)
  421. fx2, fy2 := curve.bigAffineToField(x2, y2)
  422. fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
  423. fOne := new(fieldVal).SetInt(1)
  424. curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
  425. // Convert the Jacobian coordinate field values back to affine big
  426. // integers.
  427. return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
  428. }
  429. // doubleZ1EqualsOne performs point doubling on the passed Jacobian point
  430. // when the point is already known to have a z value of 1 and stores
  431. // the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
  432. // performs faster point doubling than the generic routine since less arithmetic
  433. // is needed due to the ability to avoid multiplication by the z value.
  434. func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
  435. // This function uses the assumptions that z1 is 1, thus the point
  436. // doubling formulas reduce to:
  437. //
  438. // X3 = (3*X1^2)^2 - 8*X1*Y1^2
  439. // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
  440. // Z3 = 2*Y1
  441. //
  442. // To compute the above efficiently, this implementation splits the
  443. // equation into intermediate elements which are used to minimize the
  444. // number of field multiplications in favor of field squarings which
  445. // are roughly 35% faster than field multiplications with the current
  446. // implementation at the time this was written.
  447. //
  448. // This uses a slightly modified version of the method shown at:
  449. // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
  450. //
  451. // In particular it performs the calculations using the following:
  452. // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
  453. // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
  454. // Z3 = 2*Y1
  455. //
  456. // This results in a cost of 1 field multiplication, 5 field squarings,
  457. // 6 field additions, and 5 integer multiplications.
  458. var a, b, c, d, e, f fieldVal
  459. z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
  460. a.SquareVal(x1) // A = X1^2 (mag: 1)
  461. b.SquareVal(y1) // B = Y1^2 (mag: 1)
  462. c.SquareVal(&b) // C = B^2 (mag: 1)
  463. b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
  464. d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
  465. d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
  466. e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
  467. f.SquareVal(&e) // F = E^2 (mag: 1)
  468. x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
  469. x3.Add(&f) // X3 = F+X3 (mag: 18)
  470. f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
  471. y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
  472. y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
  473. // Normalize the field values back to a magnitude of 1.
  474. x3.Normalize()
  475. y3.Normalize()
  476. z3.Normalize()
  477. }
  478. // doubleGeneric performs point doubling on the passed Jacobian point without
  479. // any assumptions about the z value and stores the result in (x3, y3, z3).
  480. // That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
  481. // doubling routines due to requiring the most arithmetic.
  482. func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
  483. // Point doubling formula for Jacobian coordinates for the secp256k1
  484. // curve:
  485. // X3 = (3*X1^2)^2 - 8*X1*Y1^2
  486. // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
  487. // Z3 = 2*Y1*Z1
  488. //
  489. // To compute the above efficiently, this implementation splits the
  490. // equation into intermediate elements which are used to minimize the
  491. // number of field multiplications in favor of field squarings which
  492. // are roughly 35% faster than field multiplications with the current
  493. // implementation at the time this was written.
  494. //
  495. // This uses a slightly modified version of the method shown at:
  496. // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
  497. //
  498. // In particular it performs the calculations using the following:
  499. // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
  500. // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
  501. // Z3 = 2*Y1*Z1
  502. //
  503. // This results in a cost of 1 field multiplication, 5 field squarings,
  504. // 6 field additions, and 5 integer multiplications.
  505. var a, b, c, d, e, f fieldVal
  506. z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
  507. a.SquareVal(x1) // A = X1^2 (mag: 1)
  508. b.SquareVal(y1) // B = Y1^2 (mag: 1)
  509. c.SquareVal(&b) // C = B^2 (mag: 1)
  510. b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
  511. d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
  512. d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
  513. e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
  514. f.SquareVal(&e) // F = E^2 (mag: 1)
  515. x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
  516. x3.Add(&f) // X3 = F+X3 (mag: 18)
  517. f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
  518. y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
  519. y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
  520. // Normalize the field values back to a magnitude of 1.
  521. x3.Normalize()
  522. y3.Normalize()
  523. z3.Normalize()
  524. }
  525. // doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
  526. // result in (x3, y3, z3).
  527. func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
  528. // Doubling a point at infinity is still infinity.
  529. if y1.IsZero() || z1.IsZero() {
  530. x3.SetInt(0)
  531. y3.SetInt(0)
  532. z3.SetInt(0)
  533. return
  534. }
  535. // Slightly faster point doubling can be achieved when the z value is 1
  536. // by avoiding the multiplication on the z value. This section calls
  537. // a point doubling function which is accelerated by using that
  538. // assumption when possible.
  539. if z1.Normalize().Equals(fieldOne) {
  540. curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
  541. return
  542. }
  543. // Fall back to generic point doubling which works with arbitrary z
  544. // values.
  545. curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
  546. }
  547. // Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
  548. func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
  549. if y1.Sign() == 0 {
  550. return new(big.Int), new(big.Int)
  551. }
  552. // Convert the affine coordinates from big integers to field values
  553. // and do the point doubling in Jacobian projective space.
  554. fx1, fy1 := curve.bigAffineToField(x1, y1)
  555. fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
  556. fOne := new(fieldVal).SetInt(1)
  557. curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
  558. // Convert the Jacobian coordinate field values back to affine big
  559. // integers.
  560. return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
  561. }
  562. // splitK returns a balanced length-two representation of k and their signs.
  563. // This is algorithm 3.74 from [GECC].
  564. //
  565. // One thing of note about this algorithm is that no matter what c1 and c2 are,
  566. // the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
  567. // provable mathematically due to how a1/b1/a2/b2 are computed.
  568. //
  569. // c1 and c2 are chosen to minimize the max(k1,k2).
  570. func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
  571. // All math here is done with big.Int, which is slow.
  572. // At some point, it might be useful to write something similar to
  573. // fieldVal but for N instead of P as the prime field if this ends up
  574. // being a bottleneck.
  575. bigIntK := new(big.Int)
  576. c1, c2 := new(big.Int), new(big.Int)
  577. tmp1, tmp2 := new(big.Int), new(big.Int)
  578. k1, k2 := new(big.Int), new(big.Int)
  579. bigIntK.SetBytes(k)
  580. // c1 = round(b2 * k / n) from step 4.
  581. // Rounding isn't really necessary and costs too much, hence skipped
  582. c1.Mul(curve.b2, bigIntK)
  583. c1.Div(c1, curve.N)
  584. // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
  585. // Rounding isn't really necessary and costs too much, hence skipped
  586. c2.Mul(curve.b1, bigIntK)
  587. c2.Div(c2, curve.N)
  588. // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
  589. tmp1.Mul(c1, curve.a1)
  590. tmp2.Mul(c2, curve.a2)
  591. k1.Sub(bigIntK, tmp1)
  592. k1.Add(k1, tmp2)
  593. // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
  594. tmp1.Mul(c1, curve.b1)
  595. tmp2.Mul(c2, curve.b2)
  596. k2.Sub(tmp2, tmp1)
  597. // Note Bytes() throws out the sign of k1 and k2. This matters
  598. // since k1 and/or k2 can be negative. Hence, we pass that
  599. // back separately.
  600. return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
  601. }
  602. // moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This
  603. // is done by doing a simple modulo curve.N. We can do this since G^N = 1 and
  604. // thus any other valid point on the elliptic curve has the same order.
  605. func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
  606. // Since the order of G is curve.N, we can use a much smaller number
  607. // by doing modulo curve.N
  608. if len(k) > curve.byteSize {
  609. // Reduce k by performing modulo curve.N.
  610. tmpK := new(big.Int).SetBytes(k)
  611. tmpK.Mod(tmpK, curve.N)
  612. return tmpK.Bytes()
  613. }
  614. return k
  615. }
  616. // NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two
  617. // byte slices. The first is where 1s will be. The second is where -1s will
  618. // be. NAF is convenient in that on average, only 1/3rd of its values are
  619. // non-zero. This is algorithm 3.30 from [GECC].
  620. //
  621. // Essentially, this makes it possible to minimize the number of operations
  622. // since the resulting ints returned will be at least 50% 0s.
  623. func NAF(k []byte) ([]byte, []byte) {
  624. // The essence of this algorithm is that whenever we have consecutive 1s
  625. // in the binary, we want to put a -1 in the lowest bit and get a bunch
  626. // of 0s up to the highest bit of consecutive 1s. This is due to this
  627. // identity:
  628. // 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
  629. //
  630. // The algorithm thus may need to go 1 more bit than the length of the
  631. // bits we actually have, hence bits being 1 bit longer than was
  632. // necessary. Since we need to know whether adding will cause a carry,
  633. // we go from right-to-left in this addition.
  634. var carry, curIsOne, nextIsOne bool
  635. // these default to zero
  636. retPos := make([]byte, len(k)+1)
  637. retNeg := make([]byte, len(k)+1)
  638. for i := len(k) - 1; i >= 0; i-- {
  639. curByte := k[i]
  640. for j := uint(0); j < 8; j++ {
  641. curIsOne = curByte&1 == 1
  642. if j == 7 {
  643. if i == 0 {
  644. nextIsOne = false
  645. } else {
  646. nextIsOne = k[i-1]&1 == 1
  647. }
  648. } else {
  649. nextIsOne = curByte&2 == 2
  650. }
  651. if carry {
  652. if curIsOne {
  653. // This bit is 1, so continue to carry
  654. // and don't need to do anything.
  655. } else {
  656. // We've hit a 0 after some number of
  657. // 1s.
  658. if nextIsOne {
  659. // Start carrying again since
  660. // a new sequence of 1s is
  661. // starting.
  662. retNeg[i+1] += 1 << j
  663. } else {
  664. // Stop carrying since 1s have
  665. // stopped.
  666. carry = false
  667. retPos[i+1] += 1 << j
  668. }
  669. }
  670. } else if curIsOne {
  671. if nextIsOne {
  672. // If this is the start of at least 2
  673. // consecutive 1s, set the current one
  674. // to -1 and start carrying.
  675. retNeg[i+1] += 1 << j
  676. carry = true
  677. } else {
  678. // This is a singleton, not consecutive
  679. // 1s.
  680. retPos[i+1] += 1 << j
  681. }
  682. }
  683. curByte >>= 1
  684. }
  685. }
  686. if carry {
  687. retPos[0] = 1
  688. }
  689. return retPos, retNeg
  690. }
  691. // ScalarMult returns k*(Bx, By) where k is a big endian integer.
  692. // Part of the elliptic.Curve interface.
  693. func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
  694. // Point Q = ∞ (point at infinity).
  695. qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
  696. // Decompose K into k1 and k2 in order to halve the number of EC ops.
  697. // See Algorithm 3.74 in [GECC].
  698. k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
  699. // The main equation here to remember is:
  700. // k * P = k1 * P + k2 * ϕ(P)
  701. //
  702. // P1 below is P in the equation, P2 below is ϕ(P) in the equation
  703. p1x, p1y := curve.bigAffineToField(Bx, By)
  704. p1yNeg := new(fieldVal).NegateVal(p1y, 1)
  705. p1z := new(fieldVal).SetInt(1)
  706. // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math
  707. // goes through.
  708. p2x := new(fieldVal).Mul2(p1x, curve.beta)
  709. p2y := new(fieldVal).Set(p1y)
  710. p2yNeg := new(fieldVal).NegateVal(p2y, 1)
  711. p2z := new(fieldVal).SetInt(1)
  712. // Flip the positive and negative values of the points as needed
  713. // depending on the signs of k1 and k2. As mentioned in the equation
  714. // above, each of k1 and k2 are multiplied by the respective point.
  715. // Since -k * P is the same thing as k * -P, and the group law for
  716. // elliptic curves states that P(x, y) = -P(x, -y), it's faster and
  717. // simplifies the code to just make the point negative.
  718. if signK1 == -1 {
  719. p1y, p1yNeg = p1yNeg, p1y
  720. }
  721. if signK2 == -1 {
  722. p2y, p2yNeg = p2yNeg, p2y
  723. }
  724. // NAF versions of k1 and k2 should have a lot more zeros.
  725. //
  726. // The Pos version of the bytes contain the +1s and the Neg versions
  727. // contain the -1s.
  728. k1PosNAF, k1NegNAF := NAF(k1)
  729. k2PosNAF, k2NegNAF := NAF(k2)
  730. k1Len := len(k1PosNAF)
  731. k2Len := len(k2PosNAF)
  732. m := k1Len
  733. if m < k2Len {
  734. m = k2Len
  735. }
  736. // Add left-to-right using the NAF optimization. See algorithm 3.77
  737. // from [GECC]. This should be faster overall since there will be a lot
  738. // more instances of 0, hence reducing the number of Jacobian additions
  739. // at the cost of 1 possible extra doubling.
  740. var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
  741. for i := 0; i < m; i++ {
  742. // Since we're going left-to-right, pad the front with 0s.
  743. if i < m-k1Len {
  744. k1BytePos = 0
  745. k1ByteNeg = 0
  746. } else {
  747. k1BytePos = k1PosNAF[i-(m-k1Len)]
  748. k1ByteNeg = k1NegNAF[i-(m-k1Len)]
  749. }
  750. if i < m-k2Len {
  751. k2BytePos = 0
  752. k2ByteNeg = 0
  753. } else {
  754. k2BytePos = k2PosNAF[i-(m-k2Len)]
  755. k2ByteNeg = k2NegNAF[i-(m-k2Len)]
  756. }
  757. for j := 7; j >= 0; j-- {
  758. // Q = 2 * Q
  759. curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
  760. if k1BytePos&0x80 == 0x80 {
  761. curve.addJacobian(qx, qy, qz, p1x, p1y, p1z,
  762. qx, qy, qz)
  763. } else if k1ByteNeg&0x80 == 0x80 {
  764. curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z,
  765. qx, qy, qz)
  766. }
  767. if k2BytePos&0x80 == 0x80 {
  768. curve.addJacobian(qx, qy, qz, p2x, p2y, p2z,
  769. qx, qy, qz)
  770. } else if k2ByteNeg&0x80 == 0x80 {
  771. curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z,
  772. qx, qy, qz)
  773. }
  774. k1BytePos <<= 1
  775. k1ByteNeg <<= 1
  776. k2BytePos <<= 1
  777. k2ByteNeg <<= 1
  778. }
  779. }
  780. // Convert the Jacobian coordinate field values back to affine big.Ints.
  781. return curve.fieldJacobianToBigAffine(qx, qy, qz)
  782. }
  783. // ScalarBaseMult returns k*G where G is the base point of the group and k is a
  784. // big endian integer.
  785. // Part of the elliptic.Curve interface.
  786. func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
  787. newK := curve.moduloReduce(k)
  788. diff := len(curve.bytePoints) - len(newK)
  789. // Point Q = ∞ (point at infinity).
  790. qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
  791. // curve.bytePoints has all 256 byte points for each 8-bit window. The
  792. // strategy is to add up the byte points. This is best understood by
  793. // expressing k in base-256 which it already sort of is.
  794. // Each "digit" in the 8-bit window can be looked up using bytePoints
  795. // and added together.
  796. for i, byteVal := range newK {
  797. p := curve.bytePoints[diff+i][byteVal]
  798. curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz)
  799. }
  800. return curve.fieldJacobianToBigAffine(qx, qy, qz)
  801. }
  802. // QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating
  803. // square roots via exponention.
  804. func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
  805. return curve.q
  806. }
  807. var initonce sync.Once
  808. var secp256k1 KoblitzCurve
  809. func initAll() {
  810. initS256()
  811. }
  812. // fromHex converts the passed hex string into a big integer pointer and will
  813. // panic is there is an error. This is only provided for the hard-coded
  814. // constants so errors in the source code can bet detected. It will only (and
  815. // must only) be called for initialization purposes.
  816. func fromHex(s string) *big.Int {
  817. r, ok := new(big.Int).SetString(s, 16)
  818. if !ok {
  819. panic("invalid hex in source file: " + s)
  820. }
  821. return r
  822. }
  823. func initS256() {
  824. // Curve parameters taken from [SECG] section 2.4.1.
  825. secp256k1.CurveParams = new(elliptic.CurveParams)
  826. secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
  827. secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
  828. secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007")
  829. secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
  830. secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
  831. secp256k1.BitSize = 256
  832. secp256k1.H = 1
  833. secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
  834. big.NewInt(1)), big.NewInt(4))
  835. // Provided for convenience since this gets computed repeatedly.
  836. secp256k1.byteSize = secp256k1.BitSize / 8
  837. // Deserialize and set the pre-computed table used to accelerate scalar
  838. // base multiplication. This is hard-coded data, so any errors are
  839. // panics because it means something is wrong in the source code.
  840. if err := loadS256BytePoints(); err != nil {
  841. panic(err)
  842. }
  843. // Next 6 constants are from Hal Finney's bitcointalk.org post:
  844. // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
  845. // May he rest in peace.
  846. //
  847. // They have also been independently derived from the code in the
  848. // EndomorphismVectors function in gensecp256k1.go.
  849. secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72")
  850. secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
  851. secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
  852. secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3")
  853. secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
  854. secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
  855. // Alternatively, we can use the parameters below, however, they seem
  856. // to be about 8% slower.
  857. // secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE")
  858. // secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
  859. // secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3")
  860. // secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15")
  861. // secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
  862. // secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
  863. }
  864. // S256 returns a Curve which implements secp256k1.
  865. func S256() *KoblitzCurve {
  866. initonce.Do(initAll)
  867. return &secp256k1
  868. }