ecies_test.go 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659
  1. // Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
  2. // Copyright (c) 2012 The Go Authors. All rights reserved.
  3. //
  4. // Redistribution and use in source and binary forms, with or without
  5. // modification, are permitted provided that the following conditions are
  6. // met:
  7. //
  8. // * Redistributions of source code must retain the above copyright
  9. // notice, this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above
  11. // copyright notice, this list of conditions and the following disclaimer
  12. // in the documentation and/or other materials provided with the
  13. // distribution.
  14. // * Neither the name of Google Inc. nor the names of its
  15. // contributors may be used to endorse or promote products derived from
  16. // this software without specific prior written permission.
  17. //
  18. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  22. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  24. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  25. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  26. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  28. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. package ecies
  30. import (
  31. "bytes"
  32. "crypto/elliptic"
  33. "crypto/rand"
  34. "crypto/sha256"
  35. "encoding/hex"
  36. "flag"
  37. "fmt"
  38. "io/ioutil"
  39. "math/big"
  40. "testing"
  41. "github.com/ethereum/go-ethereum/crypto"
  42. )
  43. var dumpEnc bool
  44. func init() {
  45. flDump := flag.Bool("dump", false, "write encrypted test message to file")
  46. flag.Parse()
  47. dumpEnc = *flDump
  48. }
  49. // Ensure the KDF generates appropriately sized keys.
  50. func TestKDF(t *testing.T) {
  51. msg := []byte("Hello, world")
  52. h := sha256.New()
  53. k, err := concatKDF(h, msg, nil, 64)
  54. if err != nil {
  55. fmt.Println(err.Error())
  56. t.FailNow()
  57. }
  58. if len(k) != 64 {
  59. fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
  60. len(k))
  61. t.FailNow()
  62. }
  63. }
  64. var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
  65. // cmpParams compares a set of ECIES parameters. We assume, as per the
  66. // docs, that AES is the only supported symmetric encryption algorithm.
  67. func cmpParams(p1, p2 *ECIESParams) bool {
  68. if p1.hashAlgo != p2.hashAlgo {
  69. return false
  70. } else if p1.KeyLen != p2.KeyLen {
  71. return false
  72. } else if p1.BlockSize != p2.BlockSize {
  73. return false
  74. }
  75. return true
  76. }
  77. // cmpPublic returns true if the two public keys represent the same pojnt.
  78. func cmpPublic(pub1, pub2 PublicKey) bool {
  79. if pub1.X == nil || pub1.Y == nil {
  80. fmt.Println(ErrInvalidPublicKey.Error())
  81. return false
  82. }
  83. if pub2.X == nil || pub2.Y == nil {
  84. fmt.Println(ErrInvalidPublicKey.Error())
  85. return false
  86. }
  87. pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
  88. pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
  89. return bytes.Equal(pub1Out, pub2Out)
  90. }
  91. // cmpPrivate returns true if the two private keys are the same.
  92. func cmpPrivate(prv1, prv2 *PrivateKey) bool {
  93. if prv1 == nil || prv1.D == nil {
  94. return false
  95. } else if prv2 == nil || prv2.D == nil {
  96. return false
  97. } else if prv1.D.Cmp(prv2.D) != 0 {
  98. return false
  99. } else {
  100. return cmpPublic(prv1.PublicKey, prv2.PublicKey)
  101. }
  102. }
  103. // Validate the ECDH component.
  104. func TestSharedKey(t *testing.T) {
  105. prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  106. if err != nil {
  107. fmt.Println(err.Error())
  108. t.FailNow()
  109. }
  110. skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2
  111. prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  112. if err != nil {
  113. fmt.Println(err.Error())
  114. t.FailNow()
  115. }
  116. sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
  117. if err != nil {
  118. fmt.Println(err.Error())
  119. t.FailNow()
  120. }
  121. sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
  122. if err != nil {
  123. fmt.Println(err.Error())
  124. t.FailNow()
  125. }
  126. if !bytes.Equal(sk1, sk2) {
  127. fmt.Println(ErrBadSharedKeys.Error())
  128. t.FailNow()
  129. }
  130. }
  131. func TestSharedKeyPadding(t *testing.T) {
  132. // sanity checks
  133. prv0 := hexKey("1adf5c18167d96a1f9a0b1ef63be8aa27eaf6032c233b2b38f7850cf5b859fd9")
  134. prv1 := hexKey("0097a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a")
  135. x0, _ := new(big.Int).SetString("1a8ed022ff7aec59dc1b440446bdda5ff6bcb3509a8b109077282b361efffbd8", 16)
  136. x1, _ := new(big.Int).SetString("6ab3ac374251f638d0abb3ef596d1dc67955b507c104e5f2009724812dc027b8", 16)
  137. y0, _ := new(big.Int).SetString("e040bd480b1deccc3bc40bd5b1fdcb7bfd352500b477cb9471366dbd4493f923", 16)
  138. y1, _ := new(big.Int).SetString("8ad915f2b503a8be6facab6588731fefeb584fd2dfa9a77a5e0bba1ec439e4fa", 16)
  139. if prv0.PublicKey.X.Cmp(x0) != 0 {
  140. t.Errorf("mismatched prv0.X:\nhave: %x\nwant: %x\n", prv0.PublicKey.X.Bytes(), x0.Bytes())
  141. }
  142. if prv0.PublicKey.Y.Cmp(y0) != 0 {
  143. t.Errorf("mismatched prv0.Y:\nhave: %x\nwant: %x\n", prv0.PublicKey.Y.Bytes(), y0.Bytes())
  144. }
  145. if prv1.PublicKey.X.Cmp(x1) != 0 {
  146. t.Errorf("mismatched prv1.X:\nhave: %x\nwant: %x\n", prv1.PublicKey.X.Bytes(), x1.Bytes())
  147. }
  148. if prv1.PublicKey.Y.Cmp(y1) != 0 {
  149. t.Errorf("mismatched prv1.Y:\nhave: %x\nwant: %x\n", prv1.PublicKey.Y.Bytes(), y1.Bytes())
  150. }
  151. // test shared secret generation
  152. sk1, err := prv0.GenerateShared(&prv1.PublicKey, 16, 16)
  153. if err != nil {
  154. fmt.Println(err.Error())
  155. }
  156. sk2, err := prv1.GenerateShared(&prv0.PublicKey, 16, 16)
  157. if err != nil {
  158. t.Fatal(err.Error())
  159. }
  160. if !bytes.Equal(sk1, sk2) {
  161. t.Fatal(ErrBadSharedKeys.Error())
  162. }
  163. }
  164. // Verify that the key generation code fails when too much key data is
  165. // requested.
  166. func TestTooBigSharedKey(t *testing.T) {
  167. prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  168. if err != nil {
  169. fmt.Println(err.Error())
  170. t.FailNow()
  171. }
  172. prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  173. if err != nil {
  174. fmt.Println(err.Error())
  175. t.FailNow()
  176. }
  177. _, err = prv1.GenerateShared(&prv2.PublicKey, 32, 32)
  178. if err != ErrSharedKeyTooBig {
  179. fmt.Println("ecdh: shared key should be too large for curve")
  180. t.FailNow()
  181. }
  182. _, err = prv2.GenerateShared(&prv1.PublicKey, 32, 32)
  183. if err != ErrSharedKeyTooBig {
  184. fmt.Println("ecdh: shared key should be too large for curve")
  185. t.FailNow()
  186. }
  187. }
  188. // Ensure a public key can be successfully marshalled and unmarshalled, and
  189. // that the decoded key is the same as the original.
  190. func TestMarshalPublic(t *testing.T) {
  191. prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  192. if err != nil {
  193. t.Fatalf("GenerateKey error: %s", err)
  194. }
  195. out, err := MarshalPublic(&prv.PublicKey)
  196. if err != nil {
  197. t.Fatalf("MarshalPublic error: %s", err)
  198. }
  199. pub, err := UnmarshalPublic(out)
  200. if err != nil {
  201. t.Fatalf("UnmarshalPublic error: %s", err)
  202. }
  203. if !cmpPublic(prv.PublicKey, *pub) {
  204. t.Fatal("ecies: failed to unmarshal public key")
  205. }
  206. }
  207. // Ensure that a private key can be encoded into DER format, and that
  208. // the resulting key is properly parsed back into a public key.
  209. func TestMarshalPrivate(t *testing.T) {
  210. prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  211. if err != nil {
  212. fmt.Println(err.Error())
  213. t.FailNow()
  214. }
  215. out, err := MarshalPrivate(prv)
  216. if err != nil {
  217. fmt.Println(err.Error())
  218. t.FailNow()
  219. }
  220. if dumpEnc {
  221. ioutil.WriteFile("test.out", out, 0644)
  222. }
  223. prv2, err := UnmarshalPrivate(out)
  224. if err != nil {
  225. fmt.Println(err.Error())
  226. t.FailNow()
  227. }
  228. if !cmpPrivate(prv, prv2) {
  229. fmt.Println("ecdh: private key import failed")
  230. t.FailNow()
  231. }
  232. }
  233. // Ensure that a private key can be successfully encoded to PEM format, and
  234. // the resulting key is properly parsed back in.
  235. func TestPrivatePEM(t *testing.T) {
  236. prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  237. if err != nil {
  238. fmt.Println(err.Error())
  239. t.FailNow()
  240. }
  241. out, err := ExportPrivatePEM(prv)
  242. if err != nil {
  243. fmt.Println(err.Error())
  244. t.FailNow()
  245. }
  246. if dumpEnc {
  247. ioutil.WriteFile("test.key", out, 0644)
  248. }
  249. prv2, err := ImportPrivatePEM(out)
  250. if err != nil {
  251. fmt.Println(err.Error())
  252. t.FailNow()
  253. } else if !cmpPrivate(prv, prv2) {
  254. fmt.Println("ecdh: import from PEM failed")
  255. t.FailNow()
  256. }
  257. }
  258. // Ensure that a public key can be successfully encoded to PEM format, and
  259. // the resulting key is properly parsed back in.
  260. func TestPublicPEM(t *testing.T) {
  261. prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  262. if err != nil {
  263. fmt.Println(err.Error())
  264. t.FailNow()
  265. }
  266. out, err := ExportPublicPEM(&prv.PublicKey)
  267. if err != nil {
  268. fmt.Println(err.Error())
  269. t.FailNow()
  270. }
  271. if dumpEnc {
  272. ioutil.WriteFile("test.pem", out, 0644)
  273. }
  274. pub2, err := ImportPublicPEM(out)
  275. if err != nil {
  276. fmt.Println(err.Error())
  277. t.FailNow()
  278. } else if !cmpPublic(prv.PublicKey, *pub2) {
  279. fmt.Println("ecdh: import from PEM failed")
  280. t.FailNow()
  281. }
  282. }
  283. // Benchmark the generation of P256 keys.
  284. func BenchmarkGenerateKeyP256(b *testing.B) {
  285. for i := 0; i < b.N; i++ {
  286. if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
  287. fmt.Println(err.Error())
  288. b.FailNow()
  289. }
  290. }
  291. }
  292. // Benchmark the generation of P256 shared keys.
  293. func BenchmarkGenSharedKeyP256(b *testing.B) {
  294. prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
  295. if err != nil {
  296. fmt.Println(err.Error())
  297. b.FailNow()
  298. }
  299. b.ResetTimer()
  300. for i := 0; i < b.N; i++ {
  301. _, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
  302. if err != nil {
  303. fmt.Println(err.Error())
  304. b.FailNow()
  305. }
  306. }
  307. }
  308. // Benchmark the generation of S256 shared keys.
  309. func BenchmarkGenSharedKeyS256(b *testing.B) {
  310. prv, err := GenerateKey(rand.Reader, crypto.S256(), nil)
  311. if err != nil {
  312. fmt.Println(err.Error())
  313. b.FailNow()
  314. }
  315. b.ResetTimer()
  316. for i := 0; i < b.N; i++ {
  317. _, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
  318. if err != nil {
  319. fmt.Println(err.Error())
  320. b.FailNow()
  321. }
  322. }
  323. }
  324. // Verify that an encrypted message can be successfully decrypted.
  325. func TestEncryptDecrypt(t *testing.T) {
  326. prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  327. if err != nil {
  328. fmt.Println(err.Error())
  329. t.FailNow()
  330. }
  331. prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  332. if err != nil {
  333. fmt.Println(err.Error())
  334. t.FailNow()
  335. }
  336. message := []byte("Hello, world.")
  337. ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
  338. if err != nil {
  339. fmt.Println(err.Error())
  340. t.FailNow()
  341. }
  342. pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
  343. if err != nil {
  344. fmt.Println(err.Error())
  345. t.FailNow()
  346. }
  347. if !bytes.Equal(pt, message) {
  348. fmt.Println("ecies: plaintext doesn't match message")
  349. t.FailNow()
  350. }
  351. _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
  352. if err == nil {
  353. fmt.Println("ecies: encryption should not have succeeded")
  354. t.FailNow()
  355. }
  356. }
  357. func TestDecryptShared2(t *testing.T) {
  358. prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  359. if err != nil {
  360. t.Fatal(err)
  361. }
  362. message := []byte("Hello, world.")
  363. shared2 := []byte("shared data 2")
  364. ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, shared2)
  365. if err != nil {
  366. t.Fatal(err)
  367. }
  368. // Check that decrypting with correct shared data works.
  369. pt, err := prv.Decrypt(rand.Reader, ct, nil, shared2)
  370. if err != nil {
  371. t.Fatal(err)
  372. }
  373. if !bytes.Equal(pt, message) {
  374. t.Fatal("ecies: plaintext doesn't match message")
  375. }
  376. // Decrypting without shared data or incorrect shared data fails.
  377. if _, err = prv.Decrypt(rand.Reader, ct, nil, nil); err == nil {
  378. t.Fatal("ecies: decrypting without shared data didn't fail")
  379. }
  380. if _, err = prv.Decrypt(rand.Reader, ct, nil, []byte("garbage")); err == nil {
  381. t.Fatal("ecies: decrypting with incorrect shared data didn't fail")
  382. }
  383. }
  384. // TestMarshalEncryption validates the encode/decode produces a valid
  385. // ECIES encryption key.
  386. func TestMarshalEncryption(t *testing.T) {
  387. prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  388. if err != nil {
  389. fmt.Println(err.Error())
  390. t.FailNow()
  391. }
  392. out, err := MarshalPrivate(prv1)
  393. if err != nil {
  394. fmt.Println(err.Error())
  395. t.FailNow()
  396. }
  397. prv2, err := UnmarshalPrivate(out)
  398. if err != nil {
  399. fmt.Println(err.Error())
  400. t.FailNow()
  401. }
  402. message := []byte("Hello, world.")
  403. ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
  404. if err != nil {
  405. fmt.Println(err.Error())
  406. t.FailNow()
  407. }
  408. pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
  409. if err != nil {
  410. fmt.Println(err.Error())
  411. t.FailNow()
  412. }
  413. if !bytes.Equal(pt, message) {
  414. fmt.Println("ecies: plaintext doesn't match message")
  415. t.FailNow()
  416. }
  417. _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
  418. if err != nil {
  419. fmt.Println(err.Error())
  420. t.FailNow()
  421. }
  422. }
  423. type testCase struct {
  424. Curve elliptic.Curve
  425. Name string
  426. Expected bool
  427. }
  428. var testCases = []testCase{
  429. {
  430. Curve: elliptic.P256(),
  431. Name: "P256",
  432. Expected: true,
  433. },
  434. {
  435. Curve: elliptic.P384(),
  436. Name: "P384",
  437. Expected: true,
  438. },
  439. {
  440. Curve: elliptic.P521(),
  441. Name: "P521",
  442. Expected: true,
  443. },
  444. }
  445. // Test parameter selection for each curve, and that P224 fails automatic
  446. // parameter selection (see README for a discussion of P224). Ensures that
  447. // selecting a set of parameters automatically for the given curve works.
  448. func TestParamSelection(t *testing.T) {
  449. for _, c := range testCases {
  450. testParamSelection(t, c)
  451. }
  452. }
  453. func testParamSelection(t *testing.T, c testCase) {
  454. params := ParamsFromCurve(c.Curve)
  455. if params == nil && c.Expected {
  456. fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
  457. t.FailNow()
  458. } else if params != nil && !c.Expected {
  459. fmt.Printf("ecies: parameters should be invalid (%s)\n",
  460. c.Name)
  461. t.FailNow()
  462. }
  463. prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  464. if err != nil {
  465. fmt.Printf("%s (%s)\n", err.Error(), c.Name)
  466. t.FailNow()
  467. }
  468. prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  469. if err != nil {
  470. fmt.Printf("%s (%s)\n", err.Error(), c.Name)
  471. t.FailNow()
  472. }
  473. message := []byte("Hello, world.")
  474. ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
  475. if err != nil {
  476. fmt.Printf("%s (%s)\n", err.Error(), c.Name)
  477. t.FailNow()
  478. }
  479. pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
  480. if err != nil {
  481. fmt.Printf("%s (%s)\n", err.Error(), c.Name)
  482. t.FailNow()
  483. }
  484. if !bytes.Equal(pt, message) {
  485. fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
  486. c.Name)
  487. t.FailNow()
  488. }
  489. _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
  490. if err == nil {
  491. fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
  492. c.Name)
  493. t.FailNow()
  494. }
  495. }
  496. // Ensure that the basic public key validation in the decryption operation
  497. // works.
  498. func TestBasicKeyValidation(t *testing.T) {
  499. badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
  500. prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
  501. if err != nil {
  502. fmt.Println(err.Error())
  503. t.FailNow()
  504. }
  505. message := []byte("Hello, world.")
  506. ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
  507. if err != nil {
  508. fmt.Println(err.Error())
  509. t.FailNow()
  510. }
  511. for _, b := range badBytes {
  512. ct[0] = b
  513. _, err := prv.Decrypt(rand.Reader, ct, nil, nil)
  514. if err != ErrInvalidPublicKey {
  515. fmt.Println("ecies: validated an invalid key")
  516. t.FailNow()
  517. }
  518. }
  519. }
  520. func TestBox(t *testing.T) {
  521. prv1 := hexKey("4b50fa71f5c3eeb8fdc452224b2395af2fcc3d125e06c32c82e048c0559db03f")
  522. prv2 := hexKey("d0b043b4c5d657670778242d82d68a29d25d7d711127d17b8e299f156dad361a")
  523. pub2 := &prv2.PublicKey
  524. message := []byte("Hello, world.")
  525. ct, err := Encrypt(rand.Reader, pub2, message, nil, nil)
  526. if err != nil {
  527. t.Fatal(err)
  528. }
  529. pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
  530. if err != nil {
  531. t.Fatal(err)
  532. }
  533. if !bytes.Equal(pt, message) {
  534. t.Fatal("ecies: plaintext doesn't match message")
  535. }
  536. if _, err = prv1.Decrypt(rand.Reader, ct, nil, nil); err == nil {
  537. t.Fatal("ecies: encryption should not have succeeded")
  538. }
  539. }
  540. // Verify GenerateShared against static values - useful when
  541. // debugging changes in underlying libs
  542. func TestSharedKeyStatic(t *testing.T) {
  543. prv1 := hexKey("7ebbc6a8358bc76dd73ebc557056702c8cfc34e5cfcd90eb83af0347575fd2ad")
  544. prv2 := hexKey("6a3d6396903245bba5837752b9e0348874e72db0c4e11e9c485a81b4ea4353b9")
  545. skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2
  546. sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
  547. if err != nil {
  548. fmt.Println(err.Error())
  549. t.FailNow()
  550. }
  551. sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
  552. if err != nil {
  553. fmt.Println(err.Error())
  554. t.FailNow()
  555. }
  556. if !bytes.Equal(sk1, sk2) {
  557. fmt.Println(ErrBadSharedKeys.Error())
  558. t.FailNow()
  559. }
  560. sk, _ := hex.DecodeString("167ccc13ac5e8a26b131c3446030c60fbfac6aa8e31149d0869f93626a4cdf62")
  561. if !bytes.Equal(sk1, sk) {
  562. t.Fatalf("shared secret mismatch: want: %x have: %x", sk, sk1)
  563. }
  564. }
  565. func hexKey(prv string) *PrivateKey {
  566. key, err := crypto.HexToECDSA(prv)
  567. if err != nil {
  568. panic(err)
  569. }
  570. return ImportECDSA(key)
  571. }