crypto.go 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. // Copyright 2014 The go-ethereum Authors
  2. // This file is part of the go-ethereum library.
  3. //
  4. // The go-ethereum library is free software: you can redistribute it and/or modify
  5. // it under the terms of the GNU Lesser General Public License as published by
  6. // the Free Software Foundation, either version 3 of the License, or
  7. // (at your option) any later version.
  8. //
  9. // The go-ethereum library is distributed in the hope that it will be useful,
  10. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. // GNU Lesser General Public License for more details.
  13. //
  14. // You should have received a copy of the GNU Lesser General Public License
  15. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
  16. package crypto
  17. import (
  18. "bufio"
  19. "crypto/ecdsa"
  20. "crypto/elliptic"
  21. "crypto/rand"
  22. "encoding/hex"
  23. "errors"
  24. "fmt"
  25. "io"
  26. "io/ioutil"
  27. "math/big"
  28. "os"
  29. "github.com/ethereum/go-ethereum/common"
  30. "github.com/ethereum/go-ethereum/common/math"
  31. "github.com/ethereum/go-ethereum/rlp"
  32. "golang.org/x/crypto/sha3"
  33. )
  34. //SignatureLength indicates the byte length required to carry a signature with recovery id.
  35. const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
  36. // RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
  37. const RecoveryIDOffset = 64
  38. // DigestLength sets the signature digest exact length
  39. const DigestLength = 32
  40. var (
  41. secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
  42. secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
  43. )
  44. var errInvalidPubkey = errors.New("invalid secp256k1 public key")
  45. // Keccak256 calculates and returns the Keccak256 hash of the input data.
  46. func Keccak256(data ...[]byte) []byte {
  47. d := sha3.NewLegacyKeccak256()
  48. for _, b := range data {
  49. d.Write(b)
  50. }
  51. return d.Sum(nil)
  52. }
  53. // Keccak256Hash calculates and returns the Keccak256 hash of the input data,
  54. // converting it to an internal Hash data structure.
  55. func Keccak256Hash(data ...[]byte) (h common.Hash) {
  56. d := sha3.NewLegacyKeccak256()
  57. for _, b := range data {
  58. d.Write(b)
  59. }
  60. d.Sum(h[:0])
  61. return h
  62. }
  63. // Keccak512 calculates and returns the Keccak512 hash of the input data.
  64. func Keccak512(data ...[]byte) []byte {
  65. d := sha3.NewLegacyKeccak512()
  66. for _, b := range data {
  67. d.Write(b)
  68. }
  69. return d.Sum(nil)
  70. }
  71. // CreateAddress creates an ethereum address given the bytes and the nonce
  72. func CreateAddress(b common.Address, nonce uint64) common.Address {
  73. data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
  74. return common.BytesToAddress(Keccak256(data)[12:])
  75. }
  76. // CreateAddress2 creates an ethereum address given the address bytes, initial
  77. // contract code hash and a salt.
  78. func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
  79. return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
  80. }
  81. // ToECDSA creates a private key with the given D value.
  82. func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
  83. return toECDSA(d, true)
  84. }
  85. // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
  86. // never be used unless you are sure the input is valid and want to avoid hitting
  87. // errors due to bad origin encoding (0 prefixes cut off).
  88. func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
  89. priv, _ := toECDSA(d, false)
  90. return priv
  91. }
  92. // toECDSA creates a private key with the given D value. The strict parameter
  93. // controls whether the key's length should be enforced at the curve size or
  94. // it can also accept legacy encodings (0 prefixes).
  95. func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
  96. priv := new(ecdsa.PrivateKey)
  97. priv.PublicKey.Curve = S256()
  98. if strict && 8*len(d) != priv.Params().BitSize {
  99. return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
  100. }
  101. priv.D = new(big.Int).SetBytes(d)
  102. // The priv.D must < N
  103. if priv.D.Cmp(secp256k1N) >= 0 {
  104. return nil, fmt.Errorf("invalid private key, >=N")
  105. }
  106. // The priv.D must not be zero or negative.
  107. if priv.D.Sign() <= 0 {
  108. return nil, fmt.Errorf("invalid private key, zero or negative")
  109. }
  110. priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
  111. if priv.PublicKey.X == nil {
  112. return nil, errors.New("invalid private key")
  113. }
  114. return priv, nil
  115. }
  116. // FromECDSA exports a private key into a binary dump.
  117. func FromECDSA(priv *ecdsa.PrivateKey) []byte {
  118. if priv == nil {
  119. return nil
  120. }
  121. return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
  122. }
  123. // UnmarshalPubkey converts bytes to a secp256k1 public key.
  124. func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
  125. x, y := elliptic.Unmarshal(S256(), pub)
  126. if x == nil {
  127. return nil, errInvalidPubkey
  128. }
  129. return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
  130. }
  131. func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
  132. if pub == nil || pub.X == nil || pub.Y == nil {
  133. return nil
  134. }
  135. return elliptic.Marshal(S256(), pub.X, pub.Y)
  136. }
  137. // HexToECDSA parses a secp256k1 private key.
  138. func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
  139. b, err := hex.DecodeString(hexkey)
  140. if byteErr, ok := err.(hex.InvalidByteError); ok {
  141. return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr))
  142. } else if err != nil {
  143. return nil, errors.New("invalid hex data for private key")
  144. }
  145. return ToECDSA(b)
  146. }
  147. // LoadECDSA loads a secp256k1 private key from the given file.
  148. func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
  149. fd, err := os.Open(file)
  150. if err != nil {
  151. return nil, err
  152. }
  153. defer fd.Close()
  154. r := bufio.NewReader(fd)
  155. buf := make([]byte, 64)
  156. n, err := readASCII(buf, r)
  157. if err != nil {
  158. return nil, err
  159. } else if n != len(buf) {
  160. return nil, fmt.Errorf("key file too short, want 64 hex characters")
  161. }
  162. if err := checkKeyFileEnd(r); err != nil {
  163. return nil, err
  164. }
  165. return HexToECDSA(string(buf))
  166. }
  167. // readASCII reads into 'buf', stopping when the buffer is full or
  168. // when a non-printable control character is encountered.
  169. func readASCII(buf []byte, r *bufio.Reader) (n int, err error) {
  170. for ; n < len(buf); n++ {
  171. buf[n], err = r.ReadByte()
  172. switch {
  173. case err == io.EOF || buf[n] < '!':
  174. return n, nil
  175. case err != nil:
  176. return n, err
  177. }
  178. }
  179. return n, nil
  180. }
  181. // checkKeyFileEnd skips over additional newlines at the end of a key file.
  182. func checkKeyFileEnd(r *bufio.Reader) error {
  183. for i := 0; ; i++ {
  184. b, err := r.ReadByte()
  185. switch {
  186. case err == io.EOF:
  187. return nil
  188. case err != nil:
  189. return err
  190. case b != '\n' && b != '\r':
  191. return fmt.Errorf("invalid character %q at end of key file", b)
  192. case i >= 2:
  193. return errors.New("key file too long, want 64 hex characters")
  194. }
  195. }
  196. }
  197. // SaveECDSA saves a secp256k1 private key to the given file with
  198. // restrictive permissions. The key data is saved hex-encoded.
  199. func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
  200. k := hex.EncodeToString(FromECDSA(key))
  201. return ioutil.WriteFile(file, []byte(k), 0600)
  202. }
  203. // GenerateKey generates a new private key.
  204. func GenerateKey() (*ecdsa.PrivateKey, error) {
  205. return ecdsa.GenerateKey(S256(), rand.Reader)
  206. }
  207. // ValidateSignatureValues verifies whether the signature values are valid with
  208. // the given chain rules. The v value is assumed to be either 0 or 1.
  209. func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
  210. if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
  211. return false
  212. }
  213. // reject upper range of s values (ECDSA malleability)
  214. // see discussion in secp256k1/libsecp256k1/include/secp256k1.h
  215. if homestead && s.Cmp(secp256k1halfN) > 0 {
  216. return false
  217. }
  218. // Frontier: allow s to be in full N range
  219. return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
  220. }
  221. func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
  222. pubBytes := FromECDSAPub(&p)
  223. return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
  224. }
  225. func zeroBytes(bytes []byte) {
  226. for i := range bytes {
  227. bytes[i] = 0
  228. }
  229. }