| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- // Copyright 2014 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package vm
- import (
- "crypto/sha256"
- "errors"
- "math/big"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/common/math"
- "github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/crypto/bn256"
- "github.com/ethereum/go-ethereum/params"
- "golang.org/x/crypto/ripemd160"
- )
- var errBadPrecompileInput = errors.New("bad pre compile input")
- // Precompiled contract is the basic interface for native Go contracts. The implementation
- // requires a deterministic gas count based on the input size of the Run method of the
- // contract.
- type PrecompiledContract interface {
- RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
- Run(input []byte) ([]byte, error) // Run runs the precompiled contract
- }
- // PrecompiledContracts contains the default set of ethereum contracts
- var PrecompiledContracts = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- }
- // PrecompiledContractsMetropolis contains the default set of ethereum contracts
- // for metropolis hardfork
- var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- common.BytesToAddress([]byte{5}): &bigModexp{},
- common.BytesToAddress([]byte{6}): &bn256Add{},
- common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
- common.BytesToAddress([]byte{8}): &pairing{},
- }
- // RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
- func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
- gas := p.RequiredGas(input)
- if contract.UseGas(gas) {
- return p.Run(input)
- } else {
- return nil, ErrOutOfGas
- }
- }
- // ECRECOVER implemented as a native contract
- type ecrecover struct{}
- func (c *ecrecover) RequiredGas(input []byte) uint64 {
- return params.EcrecoverGas
- }
- func (c *ecrecover) Run(in []byte) ([]byte, error) {
- const ecRecoverInputLength = 128
- in = common.RightPadBytes(in, ecRecoverInputLength)
- // "in" is (hash, v, r, s), each 32 bytes
- // but for ecrecover we want (r, s, v)
- r := new(big.Int).SetBytes(in[64:96])
- s := new(big.Int).SetBytes(in[96:128])
- v := in[63] - 27
- // tighter sig s values in homestead only apply to tx sigs
- if !allZero(in[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
- return nil, nil
- }
- // v needs to be at the end for libsecp256k1
- pubKey, err := crypto.Ecrecover(in[:32], append(in[64:128], v))
- // make sure the public key is a valid one
- if err != nil {
- return nil, nil
- }
- // the first byte of pubkey is bitcoin heritage
- return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
- }
- // SHA256 implemented as a native contract
- type sha256hash struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *sha256hash) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.Sha256WordGas + params.Sha256Gas
- }
- func (c *sha256hash) Run(in []byte) ([]byte, error) {
- h := sha256.Sum256(in)
- return h[:], nil
- }
- // RIPMED160 implemented as a native contract
- type ripemd160hash struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas
- }
- func (c *ripemd160hash) Run(in []byte) ([]byte, error) {
- ripemd := ripemd160.New()
- ripemd.Write(in)
- return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
- }
- // data copy implemented as a native contract
- type dataCopy struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *dataCopy) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.IdentityWordGas + params.IdentityGas
- }
- func (c *dataCopy) Run(in []byte) ([]byte, error) {
- return in, nil
- }
- // bigModexp implements a native big integer exponential modular operation.
- type bigModexp struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *bigModexp) RequiredGas(input []byte) uint64 {
- // TODO reword required gas to have error reporting and convert arithmetic
- // to uint64.
- if len(input) < 3*32 {
- input = append(input, make([]byte, 3*32-len(input))...)
- }
- var (
- baseLen = new(big.Int).SetBytes(input[:31])
- expLen = math.BigMax(new(big.Int).SetBytes(input[32:64]), big.NewInt(1))
- modLen = new(big.Int).SetBytes(input[65:97])
- )
- x := new(big.Int).Set(math.BigMax(baseLen, modLen))
- x.Mul(x, x)
- x.Mul(x, expLen)
- x.Div(x, new(big.Int).SetUint64(params.QuadCoeffDiv))
- return x.Uint64()
- }
- func (c *bigModexp) Run(input []byte) ([]byte, error) {
- if len(input) < 3*32 {
- input = append(input, make([]byte, 3*32-len(input))...)
- }
- // why 32-byte? These values won't fit anyway
- var (
- baseLen = new(big.Int).SetBytes(input[:32]).Uint64()
- expLen = new(big.Int).SetBytes(input[32:64]).Uint64()
- modLen = new(big.Int).SetBytes(input[64:96]).Uint64()
- )
- input = input[96:]
- if uint64(len(input)) < baseLen {
- input = append(input, make([]byte, baseLen-uint64(len(input)))...)
- }
- base := new(big.Int).SetBytes(input[:baseLen])
- input = input[baseLen:]
- if uint64(len(input)) < expLen {
- input = append(input, make([]byte, expLen-uint64(len(input)))...)
- }
- exp := new(big.Int).SetBytes(input[:expLen])
- input = input[expLen:]
- if uint64(len(input)) < modLen {
- input = append(input, make([]byte, modLen-uint64(len(input)))...)
- }
- mod := new(big.Int).SetBytes(input[:modLen])
- return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), len(input[:modLen])), nil
- }
- type bn256Add struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *bn256Add) RequiredGas(input []byte) uint64 {
- return 0 // TODO
- }
- func (c *bn256Add) Run(in []byte) ([]byte, error) {
- in = common.RightPadBytes(in, 128)
- x, onCurve := new(bn256.G1).Unmarshal(in[:64])
- if !onCurve {
- return nil, errNotOnCurve
- }
- gx, gy, _, _ := x.CurvePoints()
- if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
- return nil, errInvalidCurvePoint
- }
- y, onCurve := new(bn256.G1).Unmarshal(in[64:128])
- if !onCurve {
- return nil, errNotOnCurve
- }
- gx, gy, _, _ = y.CurvePoints()
- if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
- return nil, errInvalidCurvePoint
- }
- x.Add(x, y)
- return x.Marshal(), nil
- }
- type bn256ScalarMul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
- return 0 // TODO
- }
- func (c *bn256ScalarMul) Run(in []byte) ([]byte, error) {
- in = common.RightPadBytes(in, 96)
- g1, onCurve := new(bn256.G1).Unmarshal(in[:64])
- if !onCurve {
- return nil, errNotOnCurve
- }
- x, y, _, _ := g1.CurvePoints()
- if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
- return nil, errInvalidCurvePoint
- }
- g1.ScalarMult(g1, new(big.Int).SetBytes(in[64:96]))
- return g1.Marshal(), nil
- }
- // pairing implements a pairing pre-compile for the bn256 curve
- type pairing struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *pairing) RequiredGas(input []byte) uint64 {
- //return 0 // TODO
- k := (len(input) + 191) / pairSize
- return uint64(60000*k + 40000)
- }
- const pairSize = 192
- var (
- true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
- fals32Byte = make([]byte, 32)
- errNotOnCurve = errors.New("point not on elliptic curve")
- errInvalidCurvePoint = errors.New("invalid elliptic curve point")
- )
- func (c *pairing) Run(in []byte) ([]byte, error) {
- if len(in) == 0 {
- return true32Byte, nil
- }
- if len(in)%pairSize > 0 {
- return nil, errBadPrecompileInput
- }
- var (
- g1s []*bn256.G1
- g2s []*bn256.G2
- )
- for i := 0; i < len(in); i += pairSize {
- g1, onCurve := new(bn256.G1).Unmarshal(in[i : i+64])
- if !onCurve {
- return nil, errNotOnCurve
- }
- x, y, _, _ := g1.CurvePoints()
- if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
- return nil, errInvalidCurvePoint
- }
- g2, onCurve := new(bn256.G2).Unmarshal(in[i+64 : i+192])
- if !onCurve {
- return nil, errNotOnCurve
- }
- x2, y2, _, _ := g2.CurvePoints()
- if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 ||
- y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 {
- return nil, errInvalidCurvePoint
- }
- g1s = append(g1s, g1)
- g2s = append(g2s, g2)
- }
- isOne := bn256.PairingCheck(g1s, g2s)
- if isOne {
- return true32Byte, nil
- }
- return fals32Byte, nil
- }
|