proof_test.go 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704
  1. // Copyright 2015 The go-ethereum Authors
  2. // This file is part of the go-ethereum library.
  3. //
  4. // The go-ethereum library is free software: you can redistribute it and/or modify
  5. // it under the terms of the GNU Lesser General Public License as published by
  6. // the Free Software Foundation, either version 3 of the License, or
  7. // (at your option) any later version.
  8. //
  9. // The go-ethereum library is distributed in the hope that it will be useful,
  10. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. // GNU Lesser General Public License for more details.
  13. //
  14. // You should have received a copy of the GNU Lesser General Public License
  15. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
  16. package trie
  17. import (
  18. "bytes"
  19. crand "crypto/rand"
  20. mrand "math/rand"
  21. "sort"
  22. "testing"
  23. "time"
  24. "github.com/ethereum/go-ethereum/common"
  25. "github.com/ethereum/go-ethereum/crypto"
  26. "github.com/ethereum/go-ethereum/ethdb/memorydb"
  27. )
  28. func init() {
  29. mrand.Seed(time.Now().Unix())
  30. }
  31. // makeProvers creates Merkle trie provers based on different implementations to
  32. // test all variations.
  33. func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
  34. var provers []func(key []byte) *memorydb.Database
  35. // Create a direct trie based Merkle prover
  36. provers = append(provers, func(key []byte) *memorydb.Database {
  37. proof := memorydb.New()
  38. trie.Prove(key, 0, proof)
  39. return proof
  40. })
  41. // Create a leaf iterator based Merkle prover
  42. provers = append(provers, func(key []byte) *memorydb.Database {
  43. proof := memorydb.New()
  44. if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
  45. for _, p := range it.Prove() {
  46. proof.Put(crypto.Keccak256(p), p)
  47. }
  48. }
  49. return proof
  50. })
  51. return provers
  52. }
  53. func TestProof(t *testing.T) {
  54. trie, vals := randomTrie(500)
  55. root := trie.Hash()
  56. for i, prover := range makeProvers(trie) {
  57. for _, kv := range vals {
  58. proof := prover(kv.k)
  59. if proof == nil {
  60. t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
  61. }
  62. val, err := VerifyProof(root, kv.k, proof)
  63. if err != nil {
  64. t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
  65. }
  66. if !bytes.Equal(val, kv.v) {
  67. t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
  68. }
  69. }
  70. }
  71. }
  72. func TestOneElementProof(t *testing.T) {
  73. trie := new(Trie)
  74. updateString(trie, "k", "v")
  75. for i, prover := range makeProvers(trie) {
  76. proof := prover([]byte("k"))
  77. if proof == nil {
  78. t.Fatalf("prover %d: nil proof", i)
  79. }
  80. if proof.Len() != 1 {
  81. t.Errorf("prover %d: proof should have one element", i)
  82. }
  83. val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
  84. if err != nil {
  85. t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  86. }
  87. if !bytes.Equal(val, []byte("v")) {
  88. t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
  89. }
  90. }
  91. }
  92. func TestBadProof(t *testing.T) {
  93. trie, vals := randomTrie(800)
  94. root := trie.Hash()
  95. for i, prover := range makeProvers(trie) {
  96. for _, kv := range vals {
  97. proof := prover(kv.k)
  98. if proof == nil {
  99. t.Fatalf("prover %d: nil proof", i)
  100. }
  101. it := proof.NewIterator(nil, nil)
  102. for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
  103. it.Next()
  104. }
  105. key := it.Key()
  106. val, _ := proof.Get(key)
  107. proof.Delete(key)
  108. it.Release()
  109. mutateByte(val)
  110. proof.Put(crypto.Keccak256(val), val)
  111. if _, err := VerifyProof(root, kv.k, proof); err == nil {
  112. t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
  113. }
  114. }
  115. }
  116. }
  117. // Tests that missing keys can also be proven. The test explicitly uses a single
  118. // entry trie and checks for missing keys both before and after the single entry.
  119. func TestMissingKeyProof(t *testing.T) {
  120. trie := new(Trie)
  121. updateString(trie, "k", "v")
  122. for i, key := range []string{"a", "j", "l", "z"} {
  123. proof := memorydb.New()
  124. trie.Prove([]byte(key), 0, proof)
  125. if proof.Len() != 1 {
  126. t.Errorf("test %d: proof should have one element", i)
  127. }
  128. val, err := VerifyProof(trie.Hash(), []byte(key), proof)
  129. if err != nil {
  130. t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  131. }
  132. if val != nil {
  133. t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
  134. }
  135. }
  136. }
  137. type entrySlice []*kv
  138. func (p entrySlice) Len() int { return len(p) }
  139. func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
  140. func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
  141. // TestRangeProof tests normal range proof with both edge proofs
  142. // as the existent proof. The test cases are generated randomly.
  143. func TestRangeProof(t *testing.T) {
  144. trie, vals := randomTrie(4096)
  145. var entries entrySlice
  146. for _, kv := range vals {
  147. entries = append(entries, kv)
  148. }
  149. sort.Sort(entries)
  150. for i := 0; i < 500; i++ {
  151. start := mrand.Intn(len(entries))
  152. end := mrand.Intn(len(entries)-start) + start
  153. if start == end {
  154. continue
  155. }
  156. firstProof, lastProof := memorydb.New(), memorydb.New()
  157. if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
  158. t.Fatalf("Failed to prove the first node %v", err)
  159. }
  160. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  161. t.Fatalf("Failed to prove the last node %v", err)
  162. }
  163. var keys [][]byte
  164. var vals [][]byte
  165. for i := start; i < end; i++ {
  166. keys = append(keys, entries[i].k)
  167. vals = append(vals, entries[i].v)
  168. }
  169. err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
  170. if err != nil {
  171. t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  172. }
  173. }
  174. }
  175. // TestRangeProof tests normal range proof with the first edge proof
  176. // as the non-existent proof. The test cases are generated randomly.
  177. func TestRangeProofWithNonExistentProof(t *testing.T) {
  178. trie, vals := randomTrie(4096)
  179. var entries entrySlice
  180. for _, kv := range vals {
  181. entries = append(entries, kv)
  182. }
  183. sort.Sort(entries)
  184. for i := 0; i < 500; i++ {
  185. start := mrand.Intn(len(entries))
  186. end := mrand.Intn(len(entries)-start) + start
  187. if start == end {
  188. continue
  189. }
  190. firstProof, lastProof := memorydb.New(), memorydb.New()
  191. first := decreseKey(common.CopyBytes(entries[start].k))
  192. if start != 0 && bytes.Equal(first, entries[start-1].k) {
  193. continue
  194. }
  195. if err := trie.Prove(first, 0, firstProof); err != nil {
  196. t.Fatalf("Failed to prove the first node %v", err)
  197. }
  198. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  199. t.Fatalf("Failed to prove the last node %v", err)
  200. }
  201. var keys [][]byte
  202. var vals [][]byte
  203. for i := start; i < end; i++ {
  204. keys = append(keys, entries[i].k)
  205. vals = append(vals, entries[i].v)
  206. }
  207. err, _ := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof)
  208. if err != nil {
  209. t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  210. }
  211. }
  212. }
  213. // TestRangeProofWithInvalidNonExistentProof tests such scenarios:
  214. // - The last edge proof is an non-existent proof
  215. // - There exists a gap between the first element and the left edge proof
  216. func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
  217. trie, vals := randomTrie(4096)
  218. var entries entrySlice
  219. for _, kv := range vals {
  220. entries = append(entries, kv)
  221. }
  222. sort.Sort(entries)
  223. // Case 1
  224. start, end := 100, 200
  225. first, last := decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[end].k))
  226. firstProof, lastProof := memorydb.New(), memorydb.New()
  227. if err := trie.Prove(first, 0, firstProof); err != nil {
  228. t.Fatalf("Failed to prove the first node %v", err)
  229. }
  230. if err := trie.Prove(last, 0, lastProof); err != nil {
  231. t.Fatalf("Failed to prove the last node %v", err)
  232. }
  233. var k [][]byte
  234. var v [][]byte
  235. for i := start; i < end; i++ {
  236. k = append(k, entries[i].k)
  237. v = append(v, entries[i].v)
  238. }
  239. err, _ := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
  240. if err == nil {
  241. t.Fatalf("Expected to detect the error, got nil")
  242. }
  243. // Case 2
  244. start, end = 100, 200
  245. first = decreseKey(common.CopyBytes(entries[start].k))
  246. firstProof, lastProof = memorydb.New(), memorydb.New()
  247. if err := trie.Prove(first, 0, firstProof); err != nil {
  248. t.Fatalf("Failed to prove the first node %v", err)
  249. }
  250. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  251. t.Fatalf("Failed to prove the last node %v", err)
  252. }
  253. start = 105 // Gap created
  254. k = make([][]byte, 0)
  255. v = make([][]byte, 0)
  256. for i := start; i < end; i++ {
  257. k = append(k, entries[i].k)
  258. v = append(v, entries[i].v)
  259. }
  260. err, _ = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
  261. if err == nil {
  262. t.Fatalf("Expected to detect the error, got nil")
  263. }
  264. }
  265. // TestOneElementRangeProof tests the proof with only one
  266. // element. The first edge proof can be existent one or
  267. // non-existent one.
  268. func TestOneElementRangeProof(t *testing.T) {
  269. trie, vals := randomTrie(4096)
  270. var entries entrySlice
  271. for _, kv := range vals {
  272. entries = append(entries, kv)
  273. }
  274. sort.Sort(entries)
  275. // One element with existent edge proof
  276. start := 1000
  277. firstProof, lastProof := memorydb.New(), memorydb.New()
  278. if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
  279. t.Fatalf("Failed to prove the first node %v", err)
  280. }
  281. if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
  282. t.Fatalf("Failed to prove the last node %v", err)
  283. }
  284. err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
  285. if err != nil {
  286. t.Fatalf("Expected no error, got %v", err)
  287. }
  288. // One element with non-existent edge proof
  289. start = 1000
  290. first := decreseKey(common.CopyBytes(entries[start].k))
  291. firstProof, lastProof = memorydb.New(), memorydb.New()
  292. if err := trie.Prove(first, 0, firstProof); err != nil {
  293. t.Fatalf("Failed to prove the first node %v", err)
  294. }
  295. if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
  296. t.Fatalf("Failed to prove the last node %v", err)
  297. }
  298. err, _ = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
  299. if err != nil {
  300. t.Fatalf("Expected no error, got %v", err)
  301. }
  302. }
  303. // TestAllElementsProof tests the range proof with all elements.
  304. // The edge proofs can be nil.
  305. func TestAllElementsProof(t *testing.T) {
  306. trie, vals := randomTrie(4096)
  307. var entries entrySlice
  308. for _, kv := range vals {
  309. entries = append(entries, kv)
  310. }
  311. sort.Sort(entries)
  312. var k [][]byte
  313. var v [][]byte
  314. for i := 0; i < len(entries); i++ {
  315. k = append(k, entries[i].k)
  316. v = append(v, entries[i].v)
  317. }
  318. err, _ := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil)
  319. if err != nil {
  320. t.Fatalf("Expected no error, got %v", err)
  321. }
  322. // Even with edge proofs, it should still work.
  323. firstProof, lastProof := memorydb.New(), memorydb.New()
  324. if err := trie.Prove(entries[0].k, 0, firstProof); err != nil {
  325. t.Fatalf("Failed to prove the first node %v", err)
  326. }
  327. if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil {
  328. t.Fatalf("Failed to prove the last node %v", err)
  329. }
  330. err, _ = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof)
  331. if err != nil {
  332. t.Fatalf("Expected no error, got %v", err)
  333. }
  334. }
  335. // TestSingleSideRangeProof tests the range starts from zero.
  336. func TestSingleSideRangeProof(t *testing.T) {
  337. for i := 0; i < 64; i++ {
  338. trie := new(Trie)
  339. var entries entrySlice
  340. for i := 0; i < 4096; i++ {
  341. value := &kv{randBytes(32), randBytes(20), false}
  342. trie.Update(value.k, value.v)
  343. entries = append(entries, value)
  344. }
  345. sort.Sort(entries)
  346. var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
  347. for _, pos := range cases {
  348. firstProof, lastProof := memorydb.New(), memorydb.New()
  349. if err := trie.Prove(common.Hash{}.Bytes(), 0, firstProof); err != nil {
  350. t.Fatalf("Failed to prove the first node %v", err)
  351. }
  352. if err := trie.Prove(entries[pos].k, 0, lastProof); err != nil {
  353. t.Fatalf("Failed to prove the first node %v", err)
  354. }
  355. k := make([][]byte, 0)
  356. v := make([][]byte, 0)
  357. for i := 0; i <= pos; i++ {
  358. k = append(k, entries[i].k)
  359. v = append(v, entries[i].v)
  360. }
  361. err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof)
  362. if err != nil {
  363. t.Fatalf("Expected no error, got %v", err)
  364. }
  365. }
  366. }
  367. }
  368. // TestBadRangeProof tests a few cases which the proof is wrong.
  369. // The prover is expected to detect the error.
  370. func TestBadRangeProof(t *testing.T) {
  371. trie, vals := randomTrie(4096)
  372. var entries entrySlice
  373. for _, kv := range vals {
  374. entries = append(entries, kv)
  375. }
  376. sort.Sort(entries)
  377. for i := 0; i < 500; i++ {
  378. start := mrand.Intn(len(entries))
  379. end := mrand.Intn(len(entries)-start) + start
  380. if start == end {
  381. continue
  382. }
  383. firstProof, lastProof := memorydb.New(), memorydb.New()
  384. if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
  385. t.Fatalf("Failed to prove the first node %v", err)
  386. }
  387. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  388. t.Fatalf("Failed to prove the last node %v", err)
  389. }
  390. var keys [][]byte
  391. var vals [][]byte
  392. for i := start; i < end; i++ {
  393. keys = append(keys, entries[i].k)
  394. vals = append(vals, entries[i].v)
  395. }
  396. testcase := mrand.Intn(6)
  397. var index int
  398. switch testcase {
  399. case 0:
  400. // Modified key
  401. index = mrand.Intn(end - start)
  402. keys[index] = randBytes(32) // In theory it can't be same
  403. case 1:
  404. // Modified val
  405. index = mrand.Intn(end - start)
  406. vals[index] = randBytes(20) // In theory it can't be same
  407. case 2:
  408. // Gapped entry slice
  409. // There are only two elements, skip it. Dropped any element
  410. // will lead to single edge proof which is always correct.
  411. if end-start <= 2 {
  412. continue
  413. }
  414. // If the dropped element is the first or last one and it's a
  415. // batch of small size elements. In this special case, it can
  416. // happen that the proof for the edge element is exactly same
  417. // with the first/last second element(since small values are
  418. // embedded in the parent). Avoid this case.
  419. index = mrand.Intn(end - start)
  420. if (index == end-start-1 || index == 0) && end <= 100 {
  421. continue
  422. }
  423. keys = append(keys[:index], keys[index+1:]...)
  424. vals = append(vals[:index], vals[index+1:]...)
  425. case 3:
  426. // Switched entry slice, same effect with gapped
  427. index = mrand.Intn(end - start)
  428. keys[index] = entries[len(entries)-1].k
  429. vals[index] = entries[len(entries)-1].v
  430. case 4:
  431. // Set random key to nil
  432. index = mrand.Intn(end - start)
  433. keys[index] = nil
  434. case 5:
  435. // Set random value to nil
  436. index = mrand.Intn(end - start)
  437. vals[index] = nil
  438. }
  439. err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
  440. if err == nil {
  441. t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
  442. }
  443. }
  444. }
  445. // TestGappedRangeProof focuses on the small trie with embedded nodes.
  446. // If the gapped node is embedded in the trie, it should be detected too.
  447. func TestGappedRangeProof(t *testing.T) {
  448. trie := new(Trie)
  449. var entries []*kv // Sorted entries
  450. for i := byte(0); i < 10; i++ {
  451. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  452. trie.Update(value.k, value.v)
  453. entries = append(entries, value)
  454. }
  455. first, last := 2, 8
  456. firstProof, lastProof := memorydb.New(), memorydb.New()
  457. if err := trie.Prove(entries[first].k, 0, firstProof); err != nil {
  458. t.Fatalf("Failed to prove the first node %v", err)
  459. }
  460. if err := trie.Prove(entries[last-1].k, 0, lastProof); err != nil {
  461. t.Fatalf("Failed to prove the last node %v", err)
  462. }
  463. var keys [][]byte
  464. var vals [][]byte
  465. for i := first; i < last; i++ {
  466. if i == (first+last)/2 {
  467. continue
  468. }
  469. keys = append(keys, entries[i].k)
  470. vals = append(vals, entries[i].v)
  471. }
  472. err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
  473. if err == nil {
  474. t.Fatal("expect error, got nil")
  475. }
  476. }
  477. func TestHasRightElement(t *testing.T) {
  478. trie := new(Trie)
  479. var entries entrySlice
  480. for i := 0; i < 4096; i++ {
  481. value := &kv{randBytes(32), randBytes(20), false}
  482. trie.Update(value.k, value.v)
  483. entries = append(entries, value)
  484. }
  485. sort.Sort(entries)
  486. var cases = []struct {
  487. start int
  488. end int
  489. hasMore bool
  490. }{
  491. {-1, 1, true}, // single element with non-existent left proof
  492. {0, 1, true}, // single element with existent left proof
  493. {0, 10, true},
  494. {50, 100, true},
  495. {50, len(entries), false}, // No more element expected
  496. {len(entries) - 1, len(entries), false}, // Single last element
  497. {0, len(entries), false}, // The whole set with existent left proof
  498. {-1, len(entries), false}, // The whole set with non-existent left proof
  499. }
  500. for _, c := range cases {
  501. var (
  502. firstKey []byte
  503. start = c.start
  504. firstProof = memorydb.New()
  505. lastProof = memorydb.New()
  506. )
  507. if c.start == -1 {
  508. firstKey, start = common.Hash{}.Bytes(), 0
  509. if err := trie.Prove(firstKey, 0, firstProof); err != nil {
  510. t.Fatalf("Failed to prove the first node %v", err)
  511. }
  512. } else {
  513. firstKey = entries[c.start].k
  514. if err := trie.Prove(entries[c.start].k, 0, firstProof); err != nil {
  515. t.Fatalf("Failed to prove the first node %v", err)
  516. }
  517. }
  518. if err := trie.Prove(entries[c.end-1].k, 0, lastProof); err != nil {
  519. t.Fatalf("Failed to prove the first node %v", err)
  520. }
  521. k := make([][]byte, 0)
  522. v := make([][]byte, 0)
  523. for i := start; i < c.end; i++ {
  524. k = append(k, entries[i].k)
  525. v = append(v, entries[i].v)
  526. }
  527. err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, k, v, firstProof, lastProof)
  528. if err != nil {
  529. t.Fatalf("Expected no error, got %v", err)
  530. }
  531. if hasMore != c.hasMore {
  532. t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
  533. }
  534. }
  535. }
  536. // mutateByte changes one byte in b.
  537. func mutateByte(b []byte) {
  538. for r := mrand.Intn(len(b)); ; {
  539. new := byte(mrand.Intn(255))
  540. if new != b[r] {
  541. b[r] = new
  542. break
  543. }
  544. }
  545. }
  546. func increseKey(key []byte) []byte {
  547. for i := len(key) - 1; i >= 0; i-- {
  548. key[i]++
  549. if key[i] != 0x0 {
  550. break
  551. }
  552. }
  553. return key
  554. }
  555. func decreseKey(key []byte) []byte {
  556. for i := len(key) - 1; i >= 0; i-- {
  557. key[i]--
  558. if key[i] != 0xff {
  559. break
  560. }
  561. }
  562. return key
  563. }
  564. func BenchmarkProve(b *testing.B) {
  565. trie, vals := randomTrie(100)
  566. var keys []string
  567. for k := range vals {
  568. keys = append(keys, k)
  569. }
  570. b.ResetTimer()
  571. for i := 0; i < b.N; i++ {
  572. kv := vals[keys[i%len(keys)]]
  573. proofs := memorydb.New()
  574. if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
  575. b.Fatalf("zero length proof for %x", kv.k)
  576. }
  577. }
  578. }
  579. func BenchmarkVerifyProof(b *testing.B) {
  580. trie, vals := randomTrie(100)
  581. root := trie.Hash()
  582. var keys []string
  583. var proofs []*memorydb.Database
  584. for k := range vals {
  585. keys = append(keys, k)
  586. proof := memorydb.New()
  587. trie.Prove([]byte(k), 0, proof)
  588. proofs = append(proofs, proof)
  589. }
  590. b.ResetTimer()
  591. for i := 0; i < b.N; i++ {
  592. im := i % len(keys)
  593. if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
  594. b.Fatalf("key %x: %v", keys[im], err)
  595. }
  596. }
  597. }
  598. func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
  599. func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
  600. func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
  601. func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
  602. func benchmarkVerifyRangeProof(b *testing.B, size int) {
  603. trie, vals := randomTrie(8192)
  604. var entries entrySlice
  605. for _, kv := range vals {
  606. entries = append(entries, kv)
  607. }
  608. sort.Sort(entries)
  609. start := 2
  610. end := start + size
  611. firstProof, lastProof := memorydb.New(), memorydb.New()
  612. if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
  613. b.Fatalf("Failed to prove the first node %v", err)
  614. }
  615. if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
  616. b.Fatalf("Failed to prove the last node %v", err)
  617. }
  618. var keys [][]byte
  619. var values [][]byte
  620. for i := start; i < end; i++ {
  621. keys = append(keys, entries[i].k)
  622. values = append(values, entries[i].v)
  623. }
  624. b.ResetTimer()
  625. for i := 0; i < b.N; i++ {
  626. err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof)
  627. if err != nil {
  628. b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
  629. }
  630. }
  631. }
  632. func randomTrie(n int) (*Trie, map[string]*kv) {
  633. trie := new(Trie)
  634. vals := make(map[string]*kv)
  635. for i := byte(0); i < 100; i++ {
  636. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  637. value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
  638. trie.Update(value.k, value.v)
  639. trie.Update(value2.k, value2.v)
  640. vals[string(value.k)] = value
  641. vals[string(value2.k)] = value2
  642. }
  643. for i := 0; i < n; i++ {
  644. value := &kv{randBytes(32), randBytes(20), false}
  645. trie.Update(value.k, value.v)
  646. vals[string(value.k)] = value
  647. }
  648. return trie, vals
  649. }
  650. func randBytes(n int) []byte {
  651. r := make([]byte, n)
  652. crand.Read(r)
  653. return r
  654. }