iterator.go 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. // Copyright 2014 The go-ethereum Authors
  2. // This file is part of the go-ethereum library.
  3. //
  4. // The go-ethereum library is free software: you can redistribute it and/or modify
  5. // it under the terms of the GNU Lesser General Public License as published by
  6. // the Free Software Foundation, either version 3 of the License, or
  7. // (at your option) any later version.
  8. //
  9. // The go-ethereum library is distributed in the hope that it will be useful,
  10. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. // GNU Lesser General Public License for more details.
  13. //
  14. // You should have received a copy of the GNU Lesser General Public License
  15. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
  16. package trie
  17. import (
  18. "bytes"
  19. "container/heap"
  20. "errors"
  21. "github.com/ethereum/go-ethereum/common"
  22. "github.com/ethereum/go-ethereum/rlp"
  23. )
  24. // Iterator is a key-value trie iterator that traverses a Trie.
  25. type Iterator struct {
  26. nodeIt NodeIterator
  27. Key []byte // Current data key on which the iterator is positioned on
  28. Value []byte // Current data value on which the iterator is positioned on
  29. Err error
  30. }
  31. // NewIterator creates a new key-value iterator from a node iterator.
  32. // Note that the value returned by the iterator is raw. If the content is encoded
  33. // (e.g. storage value is RLP-encoded), it's caller's duty to decode it.
  34. func NewIterator(it NodeIterator) *Iterator {
  35. return &Iterator{
  36. nodeIt: it,
  37. }
  38. }
  39. // Next moves the iterator forward one key-value entry.
  40. func (it *Iterator) Next() bool {
  41. for it.nodeIt.Next(true) {
  42. if it.nodeIt.Leaf() {
  43. it.Key = it.nodeIt.LeafKey()
  44. it.Value = it.nodeIt.LeafBlob()
  45. return true
  46. }
  47. }
  48. it.Key = nil
  49. it.Value = nil
  50. it.Err = it.nodeIt.Error()
  51. return false
  52. }
  53. // Prove generates the Merkle proof for the leaf node the iterator is currently
  54. // positioned on.
  55. func (it *Iterator) Prove() [][]byte {
  56. return it.nodeIt.LeafProof()
  57. }
  58. // NodeIterator is an iterator to traverse the trie pre-order.
  59. type NodeIterator interface {
  60. // Next moves the iterator to the next node. If the parameter is false, any child
  61. // nodes will be skipped.
  62. Next(bool) bool
  63. // Error returns the error status of the iterator.
  64. Error() error
  65. // Hash returns the hash of the current node.
  66. Hash() common.Hash
  67. // Parent returns the hash of the parent of the current node. The hash may be the one
  68. // grandparent if the immediate parent is an internal node with no hash.
  69. Parent() common.Hash
  70. // Path returns the hex-encoded path to the current node.
  71. // Callers must not retain references to the return value after calling Next.
  72. // For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
  73. Path() []byte
  74. // Leaf returns true iff the current node is a leaf node.
  75. Leaf() bool
  76. // LeafKey returns the key of the leaf. The method panics if the iterator is not
  77. // positioned at a leaf. Callers must not retain references to the value after
  78. // calling Next.
  79. LeafKey() []byte
  80. // LeafBlob returns the content of the leaf. The method panics if the iterator
  81. // is not positioned at a leaf. Callers must not retain references to the value
  82. // after calling Next.
  83. LeafBlob() []byte
  84. // LeafProof returns the Merkle proof of the leaf. The method panics if the
  85. // iterator is not positioned at a leaf. Callers must not retain references
  86. // to the value after calling Next.
  87. LeafProof() [][]byte
  88. }
  89. // nodeIteratorState represents the iteration state at one particular node of the
  90. // trie, which can be resumed at a later invocation.
  91. type nodeIteratorState struct {
  92. hash common.Hash // Hash of the node being iterated (nil if not standalone)
  93. node node // Trie node being iterated
  94. parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
  95. index int // Child to be processed next
  96. pathlen int // Length of the path to this node
  97. }
  98. type nodeIterator struct {
  99. trie *Trie // Trie being iterated
  100. stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
  101. path []byte // Path to the current node
  102. err error // Failure set in case of an internal error in the iterator
  103. }
  104. // errIteratorEnd is stored in nodeIterator.err when iteration is done.
  105. var errIteratorEnd = errors.New("end of iteration")
  106. // seekError is stored in nodeIterator.err if the initial seek has failed.
  107. type seekError struct {
  108. key []byte
  109. err error
  110. }
  111. func (e seekError) Error() string {
  112. return "seek error: " + e.err.Error()
  113. }
  114. func newNodeIterator(trie *Trie, start []byte) NodeIterator {
  115. if trie.Hash() == emptyState {
  116. return new(nodeIterator)
  117. }
  118. it := &nodeIterator{trie: trie}
  119. it.err = it.seek(start)
  120. return it
  121. }
  122. func (it *nodeIterator) Hash() common.Hash {
  123. if len(it.stack) == 0 {
  124. return common.Hash{}
  125. }
  126. return it.stack[len(it.stack)-1].hash
  127. }
  128. func (it *nodeIterator) Parent() common.Hash {
  129. if len(it.stack) == 0 {
  130. return common.Hash{}
  131. }
  132. return it.stack[len(it.stack)-1].parent
  133. }
  134. func (it *nodeIterator) Leaf() bool {
  135. return hasTerm(it.path)
  136. }
  137. func (it *nodeIterator) LeafKey() []byte {
  138. if len(it.stack) > 0 {
  139. if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
  140. return hexToKeybytes(it.path)
  141. }
  142. }
  143. panic("not at leaf")
  144. }
  145. func (it *nodeIterator) LeafBlob() []byte {
  146. if len(it.stack) > 0 {
  147. if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
  148. return []byte(node)
  149. }
  150. }
  151. panic("not at leaf")
  152. }
  153. func (it *nodeIterator) LeafProof() [][]byte {
  154. if len(it.stack) > 0 {
  155. if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
  156. hasher := newHasher(false)
  157. defer returnHasherToPool(hasher)
  158. proofs := make([][]byte, 0, len(it.stack))
  159. for i, item := range it.stack[:len(it.stack)-1] {
  160. // Gather nodes that end up as hash nodes (or the root)
  161. node, hashed := hasher.proofHash(item.node)
  162. if _, ok := hashed.(hashNode); ok || i == 0 {
  163. enc, _ := rlp.EncodeToBytes(node)
  164. proofs = append(proofs, enc)
  165. }
  166. }
  167. return proofs
  168. }
  169. }
  170. panic("not at leaf")
  171. }
  172. func (it *nodeIterator) Path() []byte {
  173. return it.path
  174. }
  175. func (it *nodeIterator) Error() error {
  176. if it.err == errIteratorEnd {
  177. return nil
  178. }
  179. if seek, ok := it.err.(seekError); ok {
  180. return seek.err
  181. }
  182. return it.err
  183. }
  184. // Next moves the iterator to the next node, returning whether there are any
  185. // further nodes. In case of an internal error this method returns false and
  186. // sets the Error field to the encountered failure. If `descend` is false,
  187. // skips iterating over any subnodes of the current node.
  188. func (it *nodeIterator) Next(descend bool) bool {
  189. if it.err == errIteratorEnd {
  190. return false
  191. }
  192. if seek, ok := it.err.(seekError); ok {
  193. if it.err = it.seek(seek.key); it.err != nil {
  194. return false
  195. }
  196. }
  197. // Otherwise step forward with the iterator and report any errors.
  198. state, parentIndex, path, err := it.peek(descend)
  199. it.err = err
  200. if it.err != nil {
  201. return false
  202. }
  203. it.push(state, parentIndex, path)
  204. return true
  205. }
  206. func (it *nodeIterator) seek(prefix []byte) error {
  207. // The path we're looking for is the hex encoded key without terminator.
  208. key := keybytesToHex(prefix)
  209. key = key[:len(key)-1]
  210. // Move forward until we're just before the closest match to key.
  211. for {
  212. state, parentIndex, path, err := it.peek(bytes.HasPrefix(key, it.path))
  213. if err == errIteratorEnd {
  214. return errIteratorEnd
  215. } else if err != nil {
  216. return seekError{prefix, err}
  217. } else if bytes.Compare(path, key) >= 0 {
  218. return nil
  219. }
  220. it.push(state, parentIndex, path)
  221. }
  222. }
  223. // peek creates the next state of the iterator.
  224. func (it *nodeIterator) peek(descend bool) (*nodeIteratorState, *int, []byte, error) {
  225. if len(it.stack) == 0 {
  226. // Initialize the iterator if we've just started.
  227. root := it.trie.Hash()
  228. state := &nodeIteratorState{node: it.trie.root, index: -1}
  229. if root != emptyRoot {
  230. state.hash = root
  231. }
  232. err := state.resolve(it.trie, nil)
  233. return state, nil, nil, err
  234. }
  235. if !descend {
  236. // If we're skipping children, pop the current node first
  237. it.pop()
  238. }
  239. // Continue iteration to the next child
  240. for len(it.stack) > 0 {
  241. parent := it.stack[len(it.stack)-1]
  242. ancestor := parent.hash
  243. if (ancestor == common.Hash{}) {
  244. ancestor = parent.parent
  245. }
  246. state, path, ok := it.nextChild(parent, ancestor)
  247. if ok {
  248. if err := state.resolve(it.trie, path); err != nil {
  249. return parent, &parent.index, path, err
  250. }
  251. return state, &parent.index, path, nil
  252. }
  253. // No more child nodes, move back up.
  254. it.pop()
  255. }
  256. return nil, nil, nil, errIteratorEnd
  257. }
  258. func (st *nodeIteratorState) resolve(tr *Trie, path []byte) error {
  259. if hash, ok := st.node.(hashNode); ok {
  260. resolved, err := tr.resolveHash(hash, path)
  261. if err != nil {
  262. return err
  263. }
  264. st.node = resolved
  265. st.hash = common.BytesToHash(hash)
  266. }
  267. return nil
  268. }
  269. func (it *nodeIterator) nextChild(parent *nodeIteratorState, ancestor common.Hash) (*nodeIteratorState, []byte, bool) {
  270. switch node := parent.node.(type) {
  271. case *fullNode:
  272. // Full node, move to the first non-nil child.
  273. for i := parent.index + 1; i < len(node.Children); i++ {
  274. child := node.Children[i]
  275. if child != nil {
  276. hash, _ := child.cache()
  277. state := &nodeIteratorState{
  278. hash: common.BytesToHash(hash),
  279. node: child,
  280. parent: ancestor,
  281. index: -1,
  282. pathlen: len(it.path),
  283. }
  284. path := append(it.path, byte(i))
  285. parent.index = i - 1
  286. return state, path, true
  287. }
  288. }
  289. case *shortNode:
  290. // Short node, return the pointer singleton child
  291. if parent.index < 0 {
  292. hash, _ := node.Val.cache()
  293. state := &nodeIteratorState{
  294. hash: common.BytesToHash(hash),
  295. node: node.Val,
  296. parent: ancestor,
  297. index: -1,
  298. pathlen: len(it.path),
  299. }
  300. path := append(it.path, node.Key...)
  301. return state, path, true
  302. }
  303. }
  304. return parent, it.path, false
  305. }
  306. func (it *nodeIterator) push(state *nodeIteratorState, parentIndex *int, path []byte) {
  307. it.path = path
  308. it.stack = append(it.stack, state)
  309. if parentIndex != nil {
  310. *parentIndex++
  311. }
  312. }
  313. func (it *nodeIterator) pop() {
  314. parent := it.stack[len(it.stack)-1]
  315. it.path = it.path[:parent.pathlen]
  316. it.stack = it.stack[:len(it.stack)-1]
  317. }
  318. func compareNodes(a, b NodeIterator) int {
  319. if cmp := bytes.Compare(a.Path(), b.Path()); cmp != 0 {
  320. return cmp
  321. }
  322. if a.Leaf() && !b.Leaf() {
  323. return -1
  324. } else if b.Leaf() && !a.Leaf() {
  325. return 1
  326. }
  327. if cmp := bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes()); cmp != 0 {
  328. return cmp
  329. }
  330. if a.Leaf() && b.Leaf() {
  331. return bytes.Compare(a.LeafBlob(), b.LeafBlob())
  332. }
  333. return 0
  334. }
  335. type differenceIterator struct {
  336. a, b NodeIterator // Nodes returned are those in b - a.
  337. eof bool // Indicates a has run out of elements
  338. count int // Number of nodes scanned on either trie
  339. }
  340. // NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
  341. // are not in a. Returns the iterator, and a pointer to an integer recording the number
  342. // of nodes seen.
  343. func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
  344. a.Next(true)
  345. it := &differenceIterator{
  346. a: a,
  347. b: b,
  348. }
  349. return it, &it.count
  350. }
  351. func (it *differenceIterator) Hash() common.Hash {
  352. return it.b.Hash()
  353. }
  354. func (it *differenceIterator) Parent() common.Hash {
  355. return it.b.Parent()
  356. }
  357. func (it *differenceIterator) Leaf() bool {
  358. return it.b.Leaf()
  359. }
  360. func (it *differenceIterator) LeafKey() []byte {
  361. return it.b.LeafKey()
  362. }
  363. func (it *differenceIterator) LeafBlob() []byte {
  364. return it.b.LeafBlob()
  365. }
  366. func (it *differenceIterator) LeafProof() [][]byte {
  367. return it.b.LeafProof()
  368. }
  369. func (it *differenceIterator) Path() []byte {
  370. return it.b.Path()
  371. }
  372. func (it *differenceIterator) Next(bool) bool {
  373. // Invariants:
  374. // - We always advance at least one element in b.
  375. // - At the start of this function, a's path is lexically greater than b's.
  376. if !it.b.Next(true) {
  377. return false
  378. }
  379. it.count++
  380. if it.eof {
  381. // a has reached eof, so we just return all elements from b
  382. return true
  383. }
  384. for {
  385. switch compareNodes(it.a, it.b) {
  386. case -1:
  387. // b jumped past a; advance a
  388. if !it.a.Next(true) {
  389. it.eof = true
  390. return true
  391. }
  392. it.count++
  393. case 1:
  394. // b is before a
  395. return true
  396. case 0:
  397. // a and b are identical; skip this whole subtree if the nodes have hashes
  398. hasHash := it.a.Hash() == common.Hash{}
  399. if !it.b.Next(hasHash) {
  400. return false
  401. }
  402. it.count++
  403. if !it.a.Next(hasHash) {
  404. it.eof = true
  405. return true
  406. }
  407. it.count++
  408. }
  409. }
  410. }
  411. func (it *differenceIterator) Error() error {
  412. if err := it.a.Error(); err != nil {
  413. return err
  414. }
  415. return it.b.Error()
  416. }
  417. type nodeIteratorHeap []NodeIterator
  418. func (h nodeIteratorHeap) Len() int { return len(h) }
  419. func (h nodeIteratorHeap) Less(i, j int) bool { return compareNodes(h[i], h[j]) < 0 }
  420. func (h nodeIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
  421. func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
  422. func (h *nodeIteratorHeap) Pop() interface{} {
  423. n := len(*h)
  424. x := (*h)[n-1]
  425. *h = (*h)[0 : n-1]
  426. return x
  427. }
  428. type unionIterator struct {
  429. items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
  430. count int // Number of nodes scanned across all tries
  431. }
  432. // NewUnionIterator constructs a NodeIterator that iterates over elements in the union
  433. // of the provided NodeIterators. Returns the iterator, and a pointer to an integer
  434. // recording the number of nodes visited.
  435. func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
  436. h := make(nodeIteratorHeap, len(iters))
  437. copy(h, iters)
  438. heap.Init(&h)
  439. ui := &unionIterator{items: &h}
  440. return ui, &ui.count
  441. }
  442. func (it *unionIterator) Hash() common.Hash {
  443. return (*it.items)[0].Hash()
  444. }
  445. func (it *unionIterator) Parent() common.Hash {
  446. return (*it.items)[0].Parent()
  447. }
  448. func (it *unionIterator) Leaf() bool {
  449. return (*it.items)[0].Leaf()
  450. }
  451. func (it *unionIterator) LeafKey() []byte {
  452. return (*it.items)[0].LeafKey()
  453. }
  454. func (it *unionIterator) LeafBlob() []byte {
  455. return (*it.items)[0].LeafBlob()
  456. }
  457. func (it *unionIterator) LeafProof() [][]byte {
  458. return (*it.items)[0].LeafProof()
  459. }
  460. func (it *unionIterator) Path() []byte {
  461. return (*it.items)[0].Path()
  462. }
  463. // Next returns the next node in the union of tries being iterated over.
  464. //
  465. // It does this by maintaining a heap of iterators, sorted by the iteration
  466. // order of their next elements, with one entry for each source trie. Each
  467. // time Next() is called, it takes the least element from the heap to return,
  468. // advancing any other iterators that also point to that same element. These
  469. // iterators are called with descend=false, since we know that any nodes under
  470. // these nodes will also be duplicates, found in the currently selected iterator.
  471. // Whenever an iterator is advanced, it is pushed back into the heap if it still
  472. // has elements remaining.
  473. //
  474. // In the case that descend=false - eg, we're asked to ignore all subnodes of the
  475. // current node - we also advance any iterators in the heap that have the current
  476. // path as a prefix.
  477. func (it *unionIterator) Next(descend bool) bool {
  478. if len(*it.items) == 0 {
  479. return false
  480. }
  481. // Get the next key from the union
  482. least := heap.Pop(it.items).(NodeIterator)
  483. // Skip over other nodes as long as they're identical, or, if we're not descending, as
  484. // long as they have the same prefix as the current node.
  485. for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
  486. skipped := heap.Pop(it.items).(NodeIterator)
  487. // Skip the whole subtree if the nodes have hashes; otherwise just skip this node
  488. if skipped.Next(skipped.Hash() == common.Hash{}) {
  489. it.count++
  490. // If there are more elements, push the iterator back on the heap
  491. heap.Push(it.items, skipped)
  492. }
  493. }
  494. if least.Next(descend) {
  495. it.count++
  496. heap.Push(it.items, least)
  497. }
  498. return len(*it.items) > 0
  499. }
  500. func (it *unionIterator) Error() error {
  501. for i := 0; i < len(*it.items); i++ {
  502. if err := (*it.items)[i].Error(); err != nil {
  503. return err
  504. }
  505. }
  506. return nil
  507. }