| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- // Copyright 2014 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package crypto
- import (
- "crypto/ecdsa"
- "crypto/elliptic"
- "crypto/rand"
- "crypto/sha256"
- "fmt"
- "io"
- "io/ioutil"
- "math/big"
- "os"
- "encoding/hex"
- "errors"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/crypto/ecies"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
- "github.com/ethereum/go-ethereum/crypto/sha3"
- "github.com/ethereum/go-ethereum/rlp"
- "golang.org/x/crypto/ripemd160"
- )
- func Keccak256(data ...[]byte) []byte {
- d := sha3.NewKeccak256()
- for _, b := range data {
- d.Write(b)
- }
- return d.Sum(nil)
- }
- func Keccak256Hash(data ...[]byte) (h common.Hash) {
- d := sha3.NewKeccak256()
- for _, b := range data {
- d.Write(b)
- }
- d.Sum(h[:0])
- return h
- }
- // Deprecated: For backward compatibility as other packages depend on these
- func Sha3(data ...[]byte) []byte { return Keccak256(data...) }
- func Sha3Hash(data ...[]byte) common.Hash { return Keccak256Hash(data...) }
- // Creates an ethereum address given the bytes and the nonce
- func CreateAddress(b common.Address, nonce uint64) common.Address {
- data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
- return common.BytesToAddress(Keccak256(data)[12:])
- }
- func Sha256(data []byte) []byte {
- hash := sha256.Sum256(data)
- return hash[:]
- }
- func Ripemd160(data []byte) []byte {
- ripemd := ripemd160.New()
- ripemd.Write(data)
- return ripemd.Sum(nil)
- }
- // Ecrecover returns the public key for the private key that was used to
- // calculate the signature.
- //
- // Note: secp256k1 expects the recover id to be either 0, 1. Ethereum
- // signatures have a recover id with an offset of 27. Callers must take
- // this into account and if "recovering" from an Ethereum signature adjust.
- func Ecrecover(hash, sig []byte) ([]byte, error) {
- return secp256k1.RecoverPubkey(hash, sig)
- }
- // New methods using proper ecdsa keys from the stdlib
- func ToECDSA(prv []byte) *ecdsa.PrivateKey {
- if len(prv) == 0 {
- return nil
- }
- priv := new(ecdsa.PrivateKey)
- priv.PublicKey.Curve = secp256k1.S256()
- priv.D = common.BigD(prv)
- priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(prv)
- return priv
- }
- func FromECDSA(prv *ecdsa.PrivateKey) []byte {
- if prv == nil {
- return nil
- }
- return prv.D.Bytes()
- }
- func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
- if len(pub) == 0 {
- return nil
- }
- x, y := elliptic.Unmarshal(secp256k1.S256(), pub)
- return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}
- }
- func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
- if pub == nil || pub.X == nil || pub.Y == nil {
- return nil
- }
- return elliptic.Marshal(secp256k1.S256(), pub.X, pub.Y)
- }
- // HexToECDSA parses a secp256k1 private key.
- func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
- b, err := hex.DecodeString(hexkey)
- if err != nil {
- return nil, errors.New("invalid hex string")
- }
- if len(b) != 32 {
- return nil, errors.New("invalid length, need 256 bits")
- }
- return ToECDSA(b), nil
- }
- // LoadECDSA loads a secp256k1 private key from the given file.
- // The key data is expected to be hex-encoded.
- func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
- buf := make([]byte, 64)
- fd, err := os.Open(file)
- if err != nil {
- return nil, err
- }
- defer fd.Close()
- if _, err := io.ReadFull(fd, buf); err != nil {
- return nil, err
- }
- key, err := hex.DecodeString(string(buf))
- if err != nil {
- return nil, err
- }
- return ToECDSA(key), nil
- }
- // SaveECDSA saves a secp256k1 private key to the given file with
- // restrictive permissions. The key data is saved hex-encoded.
- func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
- k := hex.EncodeToString(FromECDSA(key))
- return ioutil.WriteFile(file, []byte(k), 0600)
- }
- func GenerateKey() (*ecdsa.PrivateKey, error) {
- return ecdsa.GenerateKey(secp256k1.S256(), rand.Reader)
- }
- // ValidateSignatureValues verifies whether the signature values are valid with
- // the given chain rules. The v value is assumed to be either 0 or 1.
- func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
- if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
- return false
- }
- // reject upper range of s values (ECDSA malleability)
- // see discussion in secp256k1/libsecp256k1/include/secp256k1.h
- if homestead && s.Cmp(secp256k1.HalfN) > 0 {
- return false
- }
- // Frontier: allow s to be in full N range
- return r.Cmp(secp256k1.N) < 0 && s.Cmp(secp256k1.N) < 0 && (v == 0 || v == 1)
- }
- func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
- s, err := Ecrecover(hash, sig)
- if err != nil {
- return nil, err
- }
- x, y := elliptic.Unmarshal(secp256k1.S256(), s)
- return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}, nil
- }
- // Sign calculates an ECDSA signature.
- //
- // This function is susceptible to chosen plaintext attacks that can leak
- // information about the private key that is used for signing. Callers must
- // be aware that the given hash cannot be chosen by an adversery. Common
- // solution is to hash any input before calculating the signature.
- //
- // The produced signature is in the [R || S || V] format where V is 0 or 1.
- func Sign(data []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
- if len(data) != 32 {
- return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(data))
- }
- seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
- defer zeroBytes(seckey)
- sig, err = secp256k1.Sign(data, seckey)
- return
- }
- func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) {
- return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil)
- }
- func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) {
- key := ecies.ImportECDSA(prv)
- return key.Decrypt(rand.Reader, ct, nil, nil)
- }
- func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
- pubBytes := FromECDSAPub(&p)
- return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
- }
- func zeroBytes(bytes []byte) {
- for i := range bytes {
- bytes[i] = 0
- }
- }
|