No Description

fudongbai 60606d3919 support fork id in header; elegant upgrade 4 years ago
.github 6a3daa2a4e .github: change gitter reference to discord link in issue template (#20896) 5 years ago
accounts 2ac4ae8395 add consensus engine Parlia implement 5 years ago
build eb2fd823b2 travis, appveyor, build, Dockerfile: bump Go to 1.14.2 (#20913) 5 years ago
cmd 650d066757 resolve comment 5 years ago
common 6402c42b67 all: simplify and fix database iteration with prefix/start (#20808) 5 years ago
consensus 60606d3919 support fork id in header; elegant upgrade 4 years ago
console be6078ad83 all: fix a bunch of inconsequential goroutine leaks (#20667) 5 years ago
contracts c6285e6437 les/checkpointoracle: move oracle into its own package (#20508) 5 years ago
core 60606d3919 support fork id in header; elegant upgrade 4 years ago
crypto fe9ffa5953 crypto: improve error messages in LoadECDSA (#20718) 5 years ago
docs 094996b8c9 docs/audits: add discv5 protocol audits from LA and C53 (#20898) 5 years ago
eth 60606d3919 support fork id in header; elegant upgrade 4 years ago
ethclient c013192ba7 ethclient: remove use of common.ToHex (#20326) 6 years ago
ethdb 6402c42b67 all: simplify and fix database iteration with prefix/start (#20808) 5 years ago
ethstats 37d6357806 ethstats: add missing Ticker.Stop call (#20867) 5 years ago
event be6078ad83 all: fix a bunch of inconsequential goroutine leaks (#20667) 5 years ago
graphql 07d909ff32 node: allow websocket and HTTP on the same port (#20810) 5 years ago
internal e81c728ff6 R4R: add max gas allwance calculation (#36) 5 years ago
les 60606d3919 support fork id in header; elegant upgrade 4 years ago
light 542df8898e core: initial version of state snapshots 5 years ago
log 5d5337c576 add async write rotate log handler 5 years ago
metrics 53e034ce0b metrics: add missing calls to Ticker.Stop in tests (#20866) 5 years ago
miner 650d066757 resolve comment 5 years ago
mobile 00064ddcfb accounts/abi: implement new fallback functions (#20764) 5 years ago
node 2ac4ae8395 add consensus engine Parlia implement 5 years ago
p2p 0851646e48 les, les/lespay/client: add service value statistics and API (#20837) 5 years ago
params 60606d3919 support fork id in header; elegant upgrade 4 years ago
rlp 44b41641f8 rlp: fix staticcheck warnings (#20368) 6 years ago
rpc 07d909ff32 node: allow websocket and HTTP on the same port (#20810) 5 years ago
signer f4816ee8b7 add chain id into sign bytes to avoid replay attack (#18) 5 years ago
swarm 42b81f94ad swarm: code cleanup, move to ethersphere/swarm (#19661) 6 years ago
tests 15540ae992 cmd: deprecate --testnet, use named networks instead (#20852) 5 years ago
trie 6402c42b67 all: simplify and fix database iteration with prefix/start (#20808) 5 years ago
whisper 6975172d01 whisper/mailserver : recover corrupt db files before opening (#20891) 5 years ago
.dockerignore be4d74f8d2 cmd, internal/build, docker: advertise commit date in unstable build versions (#19522) 6 years ago
.gitattributes 6cdfb9a3eb .gitattributes: enable solidity highlighting on github (#16425) 7 years ago
.gitignore 689486449d build: use golangci-lint (#20295) 6 years ago
.gitmodules 225de7ca0a tests: update tests and implement general state tests (#14734) 8 years ago
.golangci.yml 1ee754b056 build: upgrade golangci to 1.22.2 (#20566) 5 years ago
.mailmap a5c0bbb4f4 all: update license information (#16089) 7 years ago
.travis.yml eb2fd823b2 travis, appveyor, build, Dockerfile: bump Go to 1.14.2 (#20913) 5 years ago
AUTHORS b973eddd28 build: deduplicate same authors with different casing 6 years ago
CHANGELOG.md 3da36e6a55 add change log for release v1.0.4 5 years ago
COPYING ea54283b30 all: update license information 10 years ago
COPYING.LESSER ea54283b30 all: update license information 10 years ago
Dockerfile 935c9e3c6a upgrade to golang1.15.5 5 years ago
Dockerfile.alltools eb2fd823b2 travis, appveyor, build, Dockerfile: bump Go to 1.14.2 (#20913) 5 years ago
Makefile feda78e052 build: remove env.sh (#20541) 5 years ago
PULL_REQUEST_TEMPLATE b0fcc0a663 Create PULL_REQUEST_TEMPLATE 5 years ago
README.md 844ed90c28 remove disclaim 5 years ago
SECURITY.md 19fa9064d7 SECURITY.md: create security policy (#19666) 6 years ago
appveyor.yml eb2fd823b2 travis, appveyor, build, Dockerfile: bump Go to 1.14.2 (#20913) 5 years ago
circle.yml 6f1e45d5ba circleci: enable docker based hive testing 9 years ago
fuzzbuzz.yaml 9938d954c8 eth: rework tx fetcher to use O(1) ops + manage network requests 5 years ago
go.mod 935c9e3c6a upgrade to golang1.15.5 5 years ago
go.sum 3f36e996df framework for upgrade system contract 5 years ago
interfaces.go b04da9d482 ethereum: improve FilterQuery comment (#18955) 6 years ago

README.md

Binance Smart Chain

The goal of Binance Smart Chain is to bring programmability and interoperability to Binance Chain. In order to embrace the existing popular community and advanced technology, it will bring huge benefits by staying compatible with all the existing smart contracts on Ethereum and Ethereum tooling. And to achieve that, the easiest solution is to develop based on go-ethereum fork, as we respect the great work of Ethereum very much.

Binance Smart Chain starts its development based on go-ethereum fork. So you may see many toolings, binaries and also docs are based on Ethereum ones, such as the name “geth”.

But from that baseline of EVM compatible, Binance Smart Chain introduces a system of 21 validators with Proof of Staked Authority (PoSA) consensus that can support short block time and lower fees. The most bonded validator candidates of staking will become validators and produce blocks. The double-sign detection and other slashing logic guarantee security, stability, and chain finality.

Cross-chain transfer and other communication are possible due to native support of interoperability. Relayers and on-chain contracts are developed to support that. Binance DEX remains a liquid venue of the exchange of assets on both chains. This dual-chain architecture will be ideal for users to take advantage of the fast trading on one side and build their decentralized apps on the other side. The Binance Smart Chain will be:

  • A self-sovereign blockchain: Provides security and safety with elected validators.
  • EVM-compatible: Supports all the existing Ethereum tooling along with faster finality and cheaper transaction fees.
  • Interoperable: Comes with efficient native dual chain communication; Optimized for scaling high-performance dApps that require fast and smooth user experience.
  • Distributed with on-chain governance: Proof of Staked Authority brings in decentralization and community participants. As the native token, BNB will serve as both the gas of smart contract execution and tokens for staking.

More details in White Paper.

Key features

Proof of Staked Authority

Although Proof-of-Work (PoW) has been approved as a practical mechanism to implement a decentralized network, it is not friendly to the environment and also requires a large size of participants to maintain the security.

Proof-of-Authority(PoA) provides some defense to 51% attack, with improved efficiency and tolerance to certain levels of Byzantine players (malicious or hacked). Meanwhile, the PoA protocol is most criticized for being not as decentralized as PoW, as the validators, i.e. the nodes that take turns to produce blocks, have all the authorities and are prone to corruption and security attacks.

Other blockchains, such as EOS and Cosmos both, introduce different types of Deputy Proof of Stake (DPoS) to allow the token holders to vote and elect the validator set. It increases the decentralization and favors community governance.

To combine DPoS and PoA for consensus, Binance Smart Chain implement a novel consensus engine called Parlia that:

  1. Blocks are produced by a limited set of validators.
  2. Validators take turns to produce blocks in a PoA manner, similar to Ethereum's Clique consensus engine.
  3. Validator set are elected in and out based on a staking based governance on Binance Chain.
  4. The validator set change is relayed via a cross-chain communication mechanism.
  5. Parlia consensus engine will interact with a set of system contracts to achieve liveness slash, revenue distributing and validator set renewing func.

Light Client of Binance Chain

To achieve the cross-chain communication from Binance Chain to Binance Smart Chain, need introduce a on-chain light client verification algorithm. It contains two parts:

  1. Stateless Precompiled contracts to do tendermint header verification and Merkle Proof verification.
  2. Stateful solidity contracts to store validator set and trusted appHash.

Native Token

BNB will run on Binance Smart Chain in the same way as ETH runs on Ethereum so that it remains as native token for BSC. This means, BNB will be used to:

  1. pay gas to deploy or invoke Smart Contract on BSC
  2. perform cross-chain operations, such as transfer token assets across Binance Smart Chain and Binance Chain.

Building the source

Many of the below are the same as or similar to go-ethereum.

For prerequisites and detailed build instructions please read the Installation Instructions on the wiki.

Building geth requires both a Go (version 1.13 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run

make geth

or, to build the full suite of utilities:

make all

Executables

The bsc project comes with several wrappers/executables found in the cmd directory.

Command Description
geth Main Binance Smart Chain client binary. It is the entry point into the BSC network (main-, test- or private net), capable of running as a full node (default), archive node (retaining all historical state) or a light node (retrieving data live). It has the same and more RPC and other interface as go-ethereum and can be used by other processes as a gateway into the BSC network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. geth --help and the CLI Wiki page for command line options.
abigen,bootnode,evm, gethrpctest,rlpdump,puppeth These binaries are exactly the same as the binaries built in go-ethereum repo.

Running geth

Going through all the possible command line flags is out of scope here (please consult our CLI Wiki page).

Hardware Requirements

The hardware must meet certain requirements to run a full node.

  • VPS running recent versions of Mac OS X or Linux.
  • 500 GB of free disk space
  • 8 cores of CPU and 16 gigabytes of memory (RAM) for mainnet.
  • 4 cores of CPU and 8 gigabytes of memory (RAM) for testnet.
  • A broadband Internet connection with upload/download speeds of at least 1 megabyte per second

A Full node on the Rialto test network

Steps:

  1. Download the binary, config and genesis files from release, or compile the binary by make geth.
  2. Init genesis state: ./geth --datadir node init genesis.json.
  3. Start your fullnode: ./geth --config ./config.toml --datadir ./node.
  4. Or start a validator node: ./geth --config ./config.toml --datadir ./node -unlock ${validatorAddr} --mine --allow-insecure-unlock. The ${validatorAddr} is the wallet account address of your running validator node.

Note: The default p2p port is 30311 and the RPC port is 8575 which is different from Ethereum.

More details about running a node and becoming a validator.

Note: Although there are some internal protective measures to prevent transactions from crossing over between the main network and test network, you should make sure to always use separate accounts for play-money and real-money. Unless you manually move accounts, geth will by default correctly separate the two networks and will not make any accounts available between them.

Programmatically interfacing geth nodes

As a developer, sooner rather than later you'll want to start interacting with geth and the Binance Smart Chain network via your own programs and not manually through the console. To aid this, geth has built-in support for a JSON-RPC based APIs (standard APIs and geth specific APIs). These can be exposed via HTTP, WebSockets and IPC (UNIX sockets on UNIX based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by geth, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --rpc Enable the HTTP-RPC server
  • --rpcaddr HTTP-RPC server listening interface (default: localhost)
  • --rpcport HTTP-RPC server listening port (default: 8545)
  • --rpcapi API's offered over the HTTP-RPC interface (default: eth,net,web3)
  • --rpccorsdomain Comma separated list of domains from which to accept cross origin requests (browser enforced)
  • --ws Enable the WS-RPC server
  • --wsaddr WS-RPC server listening interface (default: localhost)
  • --wsport WS-RPC server listening port (default: 8546)
  • --wsapi API's offered over the WS-RPC interface (default: eth,net,web3)
  • --wsorigins Origins from which to accept websockets requests
  • --ipcdisable Disable the IPC-RPC server
  • --ipcapi API's offered over the IPC-RPC interface (default: admin,debug,eth,miner,net,personal,shh,txpool,web3)
  • --ipcpath Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a geth node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert BSC nodes with exposed APIs! Further, all browser tabs can access locally running web servers, so malicious web pages could try to subvert locally available APIs!

License

The bsc library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the COPYING.LESSER file.

The bsc binaries (i.e. all code inside of the cmd directory) is licensed under the GNU General Public License v3.0, also included in our repository in the COPYING file.