| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504 |
- // Copyright 2014 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package vm
- import (
- "crypto/sha256"
- "encoding/binary"
- "errors"
- "math/big"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/common/math"
- "github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/crypto/blake2b"
- "github.com/ethereum/go-ethereum/crypto/bn256"
- "github.com/ethereum/go-ethereum/params"
- //lint:ignore SA1019 Needed for precompile
- "golang.org/x/crypto/ripemd160"
- )
- // PrecompiledContract is the basic interface for native Go contracts. The implementation
- // requires a deterministic gas count based on the input size of the Run method of the
- // contract.
- type PrecompiledContract interface {
- RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
- Run(input []byte) ([]byte, error) // Run runs the precompiled contract
- }
- // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
- // contracts used in the Frontier and Homestead releases.
- var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- }
- // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
- // contracts used in the Byzantium release.
- var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- common.BytesToAddress([]byte{5}): &bigModExp{},
- common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
- common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
- common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
- }
- // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
- // contracts used in the Istanbul release.
- var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
- common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256hash{},
- common.BytesToAddress([]byte{3}): &ripemd160hash{},
- common.BytesToAddress([]byte{4}): &dataCopy{},
- common.BytesToAddress([]byte{5}): &bigModExp{},
- common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
- common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
- common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
- common.BytesToAddress([]byte{9}): &blake2F{},
- }
- // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
- func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
- gas := p.RequiredGas(input)
- if contract.UseGas(gas) {
- return p.Run(input)
- }
- return nil, ErrOutOfGas
- }
- // ECRECOVER implemented as a native contract.
- type ecrecover struct{}
- func (c *ecrecover) RequiredGas(input []byte) uint64 {
- return params.EcrecoverGas
- }
- func (c *ecrecover) Run(input []byte) ([]byte, error) {
- const ecRecoverInputLength = 128
- input = common.RightPadBytes(input, ecRecoverInputLength)
- // "input" is (hash, v, r, s), each 32 bytes
- // but for ecrecover we want (r, s, v)
- r := new(big.Int).SetBytes(input[64:96])
- s := new(big.Int).SetBytes(input[96:128])
- v := input[63] - 27
- // tighter sig s values input homestead only apply to tx sigs
- if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
- return nil, nil
- }
- // We must make sure not to modify the 'input', so placing the 'v' along with
- // the signature needs to be done on a new allocation
- sig := make([]byte, 65)
- copy(sig, input[64:128])
- sig[64] = v
- // v needs to be at the end for libsecp256k1
- pubKey, err := crypto.Ecrecover(input[:32], sig)
- // make sure the public key is a valid one
- if err != nil {
- return nil, nil
- }
- // the first byte of pubkey is bitcoin heritage
- return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
- }
- // SHA256 implemented as a native contract.
- type sha256hash struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *sha256hash) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
- }
- func (c *sha256hash) Run(input []byte) ([]byte, error) {
- h := sha256.Sum256(input)
- return h[:], nil
- }
- // RIPEMD160 implemented as a native contract.
- type ripemd160hash struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
- }
- func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
- ripemd := ripemd160.New()
- ripemd.Write(input)
- return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
- }
- // data copy implemented as a native contract.
- type dataCopy struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- //
- // This method does not require any overflow checking as the input size gas costs
- // required for anything significant is so high it's impossible to pay for.
- func (c *dataCopy) RequiredGas(input []byte) uint64 {
- return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
- }
- func (c *dataCopy) Run(in []byte) ([]byte, error) {
- return in, nil
- }
- // bigModExp implements a native big integer exponential modular operation.
- type bigModExp struct{}
- var (
- big1 = big.NewInt(1)
- big4 = big.NewInt(4)
- big8 = big.NewInt(8)
- big16 = big.NewInt(16)
- big32 = big.NewInt(32)
- big64 = big.NewInt(64)
- big96 = big.NewInt(96)
- big480 = big.NewInt(480)
- big1024 = big.NewInt(1024)
- big3072 = big.NewInt(3072)
- big199680 = big.NewInt(199680)
- )
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bigModExp) RequiredGas(input []byte) uint64 {
- var (
- baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
- expLen = new(big.Int).SetBytes(getData(input, 32, 32))
- modLen = new(big.Int).SetBytes(getData(input, 64, 32))
- )
- if len(input) > 96 {
- input = input[96:]
- } else {
- input = input[:0]
- }
- // Retrieve the head 32 bytes of exp for the adjusted exponent length
- var expHead *big.Int
- if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
- expHead = new(big.Int)
- } else {
- if expLen.Cmp(big32) > 0 {
- expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
- } else {
- expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
- }
- }
- // Calculate the adjusted exponent length
- var msb int
- if bitlen := expHead.BitLen(); bitlen > 0 {
- msb = bitlen - 1
- }
- adjExpLen := new(big.Int)
- if expLen.Cmp(big32) > 0 {
- adjExpLen.Sub(expLen, big32)
- adjExpLen.Mul(big8, adjExpLen)
- }
- adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
- // Calculate the gas cost of the operation
- gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
- switch {
- case gas.Cmp(big64) <= 0:
- gas.Mul(gas, gas)
- case gas.Cmp(big1024) <= 0:
- gas = new(big.Int).Add(
- new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
- new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
- )
- default:
- gas = new(big.Int).Add(
- new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
- new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
- )
- }
- gas.Mul(gas, math.BigMax(adjExpLen, big1))
- gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
- if gas.BitLen() > 64 {
- return math.MaxUint64
- }
- return gas.Uint64()
- }
- func (c *bigModExp) Run(input []byte) ([]byte, error) {
- var (
- baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
- expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
- modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
- )
- if len(input) > 96 {
- input = input[96:]
- } else {
- input = input[:0]
- }
- // Handle a special case when both the base and mod length is zero
- if baseLen == 0 && modLen == 0 {
- return []byte{}, nil
- }
- // Retrieve the operands and execute the exponentiation
- var (
- base = new(big.Int).SetBytes(getData(input, 0, baseLen))
- exp = new(big.Int).SetBytes(getData(input, baseLen, expLen))
- mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
- )
- if mod.BitLen() == 0 {
- // Modulo 0 is undefined, return zero
- return common.LeftPadBytes([]byte{}, int(modLen)), nil
- }
- return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
- }
- // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
- // returning it, or an error if the point is invalid.
- func newCurvePoint(blob []byte) (*bn256.G1, error) {
- p := new(bn256.G1)
- if _, err := p.Unmarshal(blob); err != nil {
- return nil, err
- }
- return p, nil
- }
- // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
- // returning it, or an error if the point is invalid.
- func newTwistPoint(blob []byte) (*bn256.G2, error) {
- p := new(bn256.G2)
- if _, err := p.Unmarshal(blob); err != nil {
- return nil, err
- }
- return p, nil
- }
- // runBn256Add implements the Bn256Add precompile, referenced by both
- // Byzantium and Istanbul operations.
- func runBn256Add(input []byte) ([]byte, error) {
- x, err := newCurvePoint(getData(input, 0, 64))
- if err != nil {
- return nil, err
- }
- y, err := newCurvePoint(getData(input, 64, 64))
- if err != nil {
- return nil, err
- }
- res := new(bn256.G1)
- res.Add(x, y)
- return res.Marshal(), nil
- }
- // bn256Add implements a native elliptic curve point addition conforming to
- // Istanbul consensus rules.
- type bn256AddIstanbul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
- return params.Bn256AddGasIstanbul
- }
- func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
- return runBn256Add(input)
- }
- // bn256AddByzantium implements a native elliptic curve point addition
- // conforming to Byzantium consensus rules.
- type bn256AddByzantium struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
- return params.Bn256AddGasByzantium
- }
- func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
- return runBn256Add(input)
- }
- // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
- // both Byzantium and Istanbul operations.
- func runBn256ScalarMul(input []byte) ([]byte, error) {
- p, err := newCurvePoint(getData(input, 0, 64))
- if err != nil {
- return nil, err
- }
- res := new(bn256.G1)
- res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
- return res.Marshal(), nil
- }
- // bn256ScalarMulIstanbul implements a native elliptic curve scalar
- // multiplication conforming to Istanbul consensus rules.
- type bn256ScalarMulIstanbul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
- return params.Bn256ScalarMulGasIstanbul
- }
- func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
- return runBn256ScalarMul(input)
- }
- // bn256ScalarMulByzantium implements a native elliptic curve scalar
- // multiplication conforming to Byzantium consensus rules.
- type bn256ScalarMulByzantium struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
- return params.Bn256ScalarMulGasByzantium
- }
- func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
- return runBn256ScalarMul(input)
- }
- var (
- // true32Byte is returned if the bn256 pairing check succeeds.
- true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
- // false32Byte is returned if the bn256 pairing check fails.
- false32Byte = make([]byte, 32)
- // errBadPairingInput is returned if the bn256 pairing input is invalid.
- errBadPairingInput = errors.New("bad elliptic curve pairing size")
- )
- // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
- // Byzantium and Istanbul operations.
- func runBn256Pairing(input []byte) ([]byte, error) {
- // Handle some corner cases cheaply
- if len(input)%192 > 0 {
- return nil, errBadPairingInput
- }
- // Convert the input into a set of coordinates
- var (
- cs []*bn256.G1
- ts []*bn256.G2
- )
- for i := 0; i < len(input); i += 192 {
- c, err := newCurvePoint(input[i : i+64])
- if err != nil {
- return nil, err
- }
- t, err := newTwistPoint(input[i+64 : i+192])
- if err != nil {
- return nil, err
- }
- cs = append(cs, c)
- ts = append(ts, t)
- }
- // Execute the pairing checks and return the results
- if bn256.PairingCheck(cs, ts) {
- return true32Byte, nil
- }
- return false32Byte, nil
- }
- // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
- // conforming to Istanbul consensus rules.
- type bn256PairingIstanbul struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
- return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
- }
- func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
- return runBn256Pairing(input)
- }
- // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
- // conforming to Byzantium consensus rules.
- type bn256PairingByzantium struct{}
- // RequiredGas returns the gas required to execute the pre-compiled contract.
- func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
- return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
- }
- func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
- return runBn256Pairing(input)
- }
- type blake2F struct{}
- func (c *blake2F) RequiredGas(input []byte) uint64 {
- // If the input is malformed, we can't calculate the gas, return 0 and let the
- // actual call choke and fault.
- if len(input) != blake2FInputLength {
- return 0
- }
- return uint64(binary.BigEndian.Uint32(input[0:4]))
- }
- const (
- blake2FInputLength = 213
- blake2FFinalBlockBytes = byte(1)
- blake2FNonFinalBlockBytes = byte(0)
- )
- var (
- errBlake2FInvalidInputLength = errors.New("invalid input length")
- errBlake2FInvalidFinalFlag = errors.New("invalid final flag")
- )
- func (c *blake2F) Run(input []byte) ([]byte, error) {
- // Make sure the input is valid (correct length and final flag)
- if len(input) != blake2FInputLength {
- return nil, errBlake2FInvalidInputLength
- }
- if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
- return nil, errBlake2FInvalidFinalFlag
- }
- // Parse the input into the Blake2b call parameters
- var (
- rounds = binary.BigEndian.Uint32(input[0:4])
- final = (input[212] == blake2FFinalBlockBytes)
- h [8]uint64
- m [16]uint64
- t [2]uint64
- )
- for i := 0; i < 8; i++ {
- offset := 4 + i*8
- h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
- }
- for i := 0; i < 16; i++ {
- offset := 68 + i*8
- m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
- }
- t[0] = binary.LittleEndian.Uint64(input[196:204])
- t[1] = binary.LittleEndian.Uint64(input[204:212])
- // Execute the compression function, extract and return the result
- blake2b.F(&h, m, t, final, rounds)
- output := make([]byte, 64)
- for i := 0; i < 8; i++ {
- offset := i * 8
- binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
- }
- return output, nil
- }
|