curve.go 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325
  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Copyright 2011 ThePiachu. All rights reserved.
  3. // Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. // * The name of ThePiachu may not be used to endorse or promote products
  19. // derived from this software without specific prior written permission.
  20. //
  21. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  22. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  23. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  24. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  25. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  26. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  27. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  28. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  29. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  30. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  31. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32. package secp256k1
  33. import (
  34. "crypto/elliptic"
  35. "math/big"
  36. "unsafe"
  37. )
  38. /*
  39. #include "libsecp256k1/include/secp256k1.h"
  40. extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
  41. */
  42. import "C"
  43. const (
  44. // number of bits in a big.Word
  45. wordBits = 32 << (uint64(^big.Word(0)) >> 63)
  46. // number of bytes in a big.Word
  47. wordBytes = wordBits / 8
  48. )
  49. // readBits encodes the absolute value of bigint as big-endian bytes. Callers
  50. // must ensure that buf has enough space. If buf is too short the result will
  51. // be incomplete.
  52. func readBits(bigint *big.Int, buf []byte) {
  53. i := len(buf)
  54. for _, d := range bigint.Bits() {
  55. for j := 0; j < wordBytes && i > 0; j++ {
  56. i--
  57. buf[i] = byte(d)
  58. d >>= 8
  59. }
  60. }
  61. }
  62. // This code is from https://github.com/ThePiachu/GoBit and implements
  63. // several Koblitz elliptic curves over prime fields.
  64. //
  65. // The curve methods, internally, on Jacobian coordinates. For a given
  66. // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
  67. // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
  68. // when the whole calculation can be performed within the transform
  69. // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
  70. // it's faster to apply and reverse the transform than to operate in
  71. // affine coordinates.
  72. // A BitCurve represents a Koblitz Curve with a=0.
  73. // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
  74. type BitCurve struct {
  75. P *big.Int // the order of the underlying field
  76. N *big.Int // the order of the base point
  77. B *big.Int // the constant of the BitCurve equation
  78. Gx, Gy *big.Int // (x,y) of the base point
  79. BitSize int // the size of the underlying field
  80. }
  81. func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
  82. return &elliptic.CurveParams{
  83. P: BitCurve.P,
  84. N: BitCurve.N,
  85. B: BitCurve.B,
  86. Gx: BitCurve.Gx,
  87. Gy: BitCurve.Gy,
  88. BitSize: BitCurve.BitSize,
  89. }
  90. }
  91. // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
  92. func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
  93. // y² = x³ + b
  94. y2 := new(big.Int).Mul(y, y) //y²
  95. y2.Mod(y2, BitCurve.P) //y²%P
  96. x3 := new(big.Int).Mul(x, x) //x²
  97. x3.Mul(x3, x) //x³
  98. x3.Add(x3, BitCurve.B) //x³+B
  99. x3.Mod(x3, BitCurve.P) //(x³+B)%P
  100. return x3.Cmp(y2) == 0
  101. }
  102. //TODO: double check if the function is okay
  103. // affineFromJacobian reverses the Jacobian transform. See the comment at the
  104. // top of the file.
  105. func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
  106. zinv := new(big.Int).ModInverse(z, BitCurve.P)
  107. zinvsq := new(big.Int).Mul(zinv, zinv)
  108. xOut = new(big.Int).Mul(x, zinvsq)
  109. xOut.Mod(xOut, BitCurve.P)
  110. zinvsq.Mul(zinvsq, zinv)
  111. yOut = new(big.Int).Mul(y, zinvsq)
  112. yOut.Mod(yOut, BitCurve.P)
  113. return
  114. }
  115. // Add returns the sum of (x1,y1) and (x2,y2)
  116. func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
  117. z := new(big.Int).SetInt64(1)
  118. return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
  119. }
  120. // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
  121. // (x2, y2, z2) and returns their sum, also in Jacobian form.
  122. func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
  123. // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
  124. z1z1 := new(big.Int).Mul(z1, z1)
  125. z1z1.Mod(z1z1, BitCurve.P)
  126. z2z2 := new(big.Int).Mul(z2, z2)
  127. z2z2.Mod(z2z2, BitCurve.P)
  128. u1 := new(big.Int).Mul(x1, z2z2)
  129. u1.Mod(u1, BitCurve.P)
  130. u2 := new(big.Int).Mul(x2, z1z1)
  131. u2.Mod(u2, BitCurve.P)
  132. h := new(big.Int).Sub(u2, u1)
  133. if h.Sign() == -1 {
  134. h.Add(h, BitCurve.P)
  135. }
  136. i := new(big.Int).Lsh(h, 1)
  137. i.Mul(i, i)
  138. j := new(big.Int).Mul(h, i)
  139. s1 := new(big.Int).Mul(y1, z2)
  140. s1.Mul(s1, z2z2)
  141. s1.Mod(s1, BitCurve.P)
  142. s2 := new(big.Int).Mul(y2, z1)
  143. s2.Mul(s2, z1z1)
  144. s2.Mod(s2, BitCurve.P)
  145. r := new(big.Int).Sub(s2, s1)
  146. if r.Sign() == -1 {
  147. r.Add(r, BitCurve.P)
  148. }
  149. r.Lsh(r, 1)
  150. v := new(big.Int).Mul(u1, i)
  151. x3 := new(big.Int).Set(r)
  152. x3.Mul(x3, x3)
  153. x3.Sub(x3, j)
  154. x3.Sub(x3, v)
  155. x3.Sub(x3, v)
  156. x3.Mod(x3, BitCurve.P)
  157. y3 := new(big.Int).Set(r)
  158. v.Sub(v, x3)
  159. y3.Mul(y3, v)
  160. s1.Mul(s1, j)
  161. s1.Lsh(s1, 1)
  162. y3.Sub(y3, s1)
  163. y3.Mod(y3, BitCurve.P)
  164. z3 := new(big.Int).Add(z1, z2)
  165. z3.Mul(z3, z3)
  166. z3.Sub(z3, z1z1)
  167. if z3.Sign() == -1 {
  168. z3.Add(z3, BitCurve.P)
  169. }
  170. z3.Sub(z3, z2z2)
  171. if z3.Sign() == -1 {
  172. z3.Add(z3, BitCurve.P)
  173. }
  174. z3.Mul(z3, h)
  175. z3.Mod(z3, BitCurve.P)
  176. return x3, y3, z3
  177. }
  178. // Double returns 2*(x,y)
  179. func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
  180. z1 := new(big.Int).SetInt64(1)
  181. return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
  182. }
  183. // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
  184. // returns its double, also in Jacobian form.
  185. func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
  186. // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
  187. a := new(big.Int).Mul(x, x) //X1²
  188. b := new(big.Int).Mul(y, y) //Y1²
  189. c := new(big.Int).Mul(b, b) //B²
  190. d := new(big.Int).Add(x, b) //X1+B
  191. d.Mul(d, d) //(X1+B)²
  192. d.Sub(d, a) //(X1+B)²-A
  193. d.Sub(d, c) //(X1+B)²-A-C
  194. d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
  195. e := new(big.Int).Mul(big.NewInt(3), a) //3*A
  196. f := new(big.Int).Mul(e, e) //E²
  197. x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
  198. x3.Sub(f, x3) //F-2*D
  199. x3.Mod(x3, BitCurve.P)
  200. y3 := new(big.Int).Sub(d, x3) //D-X3
  201. y3.Mul(e, y3) //E*(D-X3)
  202. y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
  203. y3.Mod(y3, BitCurve.P)
  204. z3 := new(big.Int).Mul(y, z) //Y1*Z1
  205. z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
  206. z3.Mod(z3, BitCurve.P)
  207. return x3, y3, z3
  208. }
  209. func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
  210. // Ensure scalar is exactly 32 bytes. We pad always, even if
  211. // scalar is 32 bytes long, to avoid a timing side channel.
  212. if len(scalar) > 32 {
  213. panic("can't handle scalars > 256 bits")
  214. }
  215. // NOTE: potential timing issue
  216. padded := make([]byte, 32)
  217. copy(padded[32-len(scalar):], scalar)
  218. scalar = padded
  219. // Do the multiplication in C, updating point.
  220. point := make([]byte, 64)
  221. readBits(Bx, point[:32])
  222. readBits(By, point[32:])
  223. pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
  224. scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
  225. res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
  226. // Unpack the result and clear temporaries.
  227. x := new(big.Int).SetBytes(point[:32])
  228. y := new(big.Int).SetBytes(point[32:])
  229. for i := range point {
  230. point[i] = 0
  231. }
  232. for i := range padded {
  233. scalar[i] = 0
  234. }
  235. if res != 1 {
  236. return nil, nil
  237. }
  238. return x, y
  239. }
  240. // ScalarBaseMult returns k*G, where G is the base point of the group and k is
  241. // an integer in big-endian form.
  242. func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
  243. return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
  244. }
  245. // Marshal converts a point into the form specified in section 4.3.6 of ANSI
  246. // X9.62.
  247. func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
  248. byteLen := (BitCurve.BitSize + 7) >> 3
  249. ret := make([]byte, 1+2*byteLen)
  250. ret[0] = 4 // uncompressed point flag
  251. readBits(x, ret[1:1+byteLen])
  252. readBits(y, ret[1+byteLen:])
  253. return ret
  254. }
  255. // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
  256. // error, x = nil.
  257. func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
  258. byteLen := (BitCurve.BitSize + 7) >> 3
  259. if len(data) != 1+2*byteLen {
  260. return
  261. }
  262. if data[0] != 4 { // uncompressed form
  263. return
  264. }
  265. x = new(big.Int).SetBytes(data[1 : 1+byteLen])
  266. y = new(big.Int).SetBytes(data[1+byteLen:])
  267. return
  268. }
  269. var theCurve = new(BitCurve)
  270. func init() {
  271. // See SEC 2 section 2.7.1
  272. // curve parameters taken from:
  273. // http://www.secg.org/sec2-v2.pdf
  274. theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
  275. theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
  276. theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
  277. theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
  278. theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
  279. theCurve.BitSize = 256
  280. }
  281. // S256 returns a BitCurve which implements secp256k1.
  282. func S256() *BitCurve {
  283. return theCurve
  284. }