| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- // Copyright 2014 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package crypto
- import (
- "crypto/aes"
- "crypto/cipher"
- "crypto/ecdsa"
- "crypto/elliptic"
- "crypto/rand"
- "crypto/sha256"
- "fmt"
- "io"
- "io/ioutil"
- "math/big"
- "os"
- "encoding/hex"
- "encoding/json"
- "errors"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/crypto/ecies"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
- "github.com/ethereum/go-ethereum/crypto/sha3"
- "github.com/ethereum/go-ethereum/rlp"
- "github.com/pborman/uuid"
- "golang.org/x/crypto/pbkdf2"
- "golang.org/x/crypto/ripemd160"
- )
- var secp256k1n *big.Int
- func init() {
- // specify the params for the s256 curve
- ecies.AddParamsForCurve(S256(), ecies.ECIES_AES128_SHA256)
- secp256k1n = common.String2Big("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141")
- }
- func Sha3(data ...[]byte) []byte {
- d := sha3.NewKeccak256()
- for _, b := range data {
- d.Write(b)
- }
- return d.Sum(nil)
- }
- func Sha3Hash(data ...[]byte) (h common.Hash) {
- d := sha3.NewKeccak256()
- for _, b := range data {
- d.Write(b)
- }
- d.Sum(h[:0])
- return h
- }
- // Creates an ethereum address given the bytes and the nonce
- func CreateAddress(b common.Address, nonce uint64) common.Address {
- data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
- return common.BytesToAddress(Sha3(data)[12:])
- //return Sha3(common.NewValue([]interface{}{b, nonce}).Encode())[12:]
- }
- func Sha256(data []byte) []byte {
- hash := sha256.Sum256(data)
- return hash[:]
- }
- func Ripemd160(data []byte) []byte {
- ripemd := ripemd160.New()
- ripemd.Write(data)
- return ripemd.Sum(nil)
- }
- func Ecrecover(hash, sig []byte) ([]byte, error) {
- return secp256k1.RecoverPubkey(hash, sig)
- }
- // New methods using proper ecdsa keys from the stdlib
- func ToECDSA(prv []byte) *ecdsa.PrivateKey {
- if len(prv) == 0 {
- return nil
- }
- priv := new(ecdsa.PrivateKey)
- priv.PublicKey.Curve = S256()
- priv.D = common.BigD(prv)
- priv.PublicKey.X, priv.PublicKey.Y = S256().ScalarBaseMult(prv)
- return priv
- }
- func FromECDSA(prv *ecdsa.PrivateKey) []byte {
- if prv == nil {
- return nil
- }
- return prv.D.Bytes()
- }
- func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
- if len(pub) == 0 {
- return nil
- }
- x, y := elliptic.Unmarshal(S256(), pub)
- return &ecdsa.PublicKey{S256(), x, y}
- }
- func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
- if pub == nil || pub.X == nil || pub.Y == nil {
- return nil
- }
- return elliptic.Marshal(S256(), pub.X, pub.Y)
- }
- // HexToECDSA parses a secp256k1 private key.
- func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
- b, err := hex.DecodeString(hexkey)
- if err != nil {
- return nil, errors.New("invalid hex string")
- }
- if len(b) != 32 {
- return nil, errors.New("invalid length, need 256 bits")
- }
- return ToECDSA(b), nil
- }
- // LoadECDSA loads a secp256k1 private key from the given file.
- // The key data is expected to be hex-encoded.
- func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
- buf := make([]byte, 64)
- fd, err := os.Open(file)
- if err != nil {
- return nil, err
- }
- defer fd.Close()
- if _, err := io.ReadFull(fd, buf); err != nil {
- return nil, err
- }
- key, err := hex.DecodeString(string(buf))
- if err != nil {
- return nil, err
- }
- return ToECDSA(key), nil
- }
- // SaveECDSA saves a secp256k1 private key to the given file with
- // restrictive permissions. The key data is saved hex-encoded.
- func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
- k := hex.EncodeToString(FromECDSA(key))
- return ioutil.WriteFile(file, []byte(k), 0600)
- }
- func GenerateKey() (*ecdsa.PrivateKey, error) {
- return ecdsa.GenerateKey(S256(), rand.Reader)
- }
- func ValidateSignatureValues(v byte, r, s *big.Int) bool {
- if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
- return false
- }
- vint := uint32(v)
- if r.Cmp(secp256k1n) < 0 && s.Cmp(secp256k1n) < 0 && (vint == 27 || vint == 28) {
- return true
- } else {
- return false
- }
- }
- func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
- s, err := Ecrecover(hash, sig)
- if err != nil {
- return nil, err
- }
- x, y := elliptic.Unmarshal(S256(), s)
- return &ecdsa.PublicKey{S256(), x, y}, nil
- }
- func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
- if len(hash) != 32 {
- return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
- }
- sig, err = secp256k1.Sign(hash, common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8))
- return
- }
- func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) {
- return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil)
- }
- func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) {
- key := ecies.ImportECDSA(prv)
- return key.Decrypt(rand.Reader, ct, nil, nil)
- }
- // Used only by block tests.
- func ImportBlockTestKey(privKeyBytes []byte) error {
- ks := NewKeyStorePassphrase(common.DefaultDataDir() + "/keystore")
- ecKey := ToECDSA(privKeyBytes)
- key := &Key{
- Id: uuid.NewRandom(),
- Address: PubkeyToAddress(ecKey.PublicKey),
- PrivateKey: ecKey,
- }
- err := ks.StoreKey(key, "")
- return err
- }
- // creates a Key and stores that in the given KeyStore by decrypting a presale key JSON
- func ImportPreSaleKey(keyStore KeyStore, keyJSON []byte, password string) (*Key, error) {
- key, err := decryptPreSaleKey(keyJSON, password)
- if err != nil {
- return nil, err
- }
- key.Id = uuid.NewRandom()
- err = keyStore.StoreKey(key, password)
- return key, err
- }
- func decryptPreSaleKey(fileContent []byte, password string) (key *Key, err error) {
- preSaleKeyStruct := struct {
- EncSeed string
- EthAddr string
- Email string
- BtcAddr string
- }{}
- err = json.Unmarshal(fileContent, &preSaleKeyStruct)
- if err != nil {
- return nil, err
- }
- encSeedBytes, err := hex.DecodeString(preSaleKeyStruct.EncSeed)
- iv := encSeedBytes[:16]
- cipherText := encSeedBytes[16:]
- /*
- See https://github.com/ethereum/pyethsaletool
- pyethsaletool generates the encryption key from password by
- 2000 rounds of PBKDF2 with HMAC-SHA-256 using password as salt (:().
- 16 byte key length within PBKDF2 and resulting key is used as AES key
- */
- passBytes := []byte(password)
- derivedKey := pbkdf2.Key(passBytes, passBytes, 2000, 16, sha256.New)
- plainText, err := aesCBCDecrypt(derivedKey, cipherText, iv)
- ethPriv := Sha3(plainText)
- ecKey := ToECDSA(ethPriv)
- key = &Key{
- Id: nil,
- Address: PubkeyToAddress(ecKey.PublicKey),
- PrivateKey: ecKey,
- }
- derivedAddr := hex.EncodeToString(key.Address.Bytes()) // needed because .Hex() gives leading "0x"
- expectedAddr := preSaleKeyStruct.EthAddr
- if derivedAddr != expectedAddr {
- err = errors.New(fmt.Sprintf("decrypted addr not equal to expected addr ", derivedAddr, expectedAddr))
- }
- return key, err
- }
- // AES-128 is selected due to size of encryptKey
- func aesCTRXOR(key, inText, iv []byte) ([]byte, error) {
- aesBlock, err := aes.NewCipher(key)
- if err != nil {
- return nil, err
- }
- stream := cipher.NewCTR(aesBlock, iv)
- outText := make([]byte, len(inText))
- stream.XORKeyStream(outText, inText)
- return outText, err
- }
- func aesCBCDecrypt(key, cipherText, iv []byte) ([]byte, error) {
- aesBlock, err := aes.NewCipher(key)
- if err != nil {
- return nil, err
- }
- decrypter := cipher.NewCBCDecrypter(aesBlock, iv)
- paddedPlaintext := make([]byte, len(cipherText))
- decrypter.CryptBlocks(paddedPlaintext, cipherText)
- plaintext := PKCS7Unpad(paddedPlaintext)
- if plaintext == nil {
- err = errors.New("Decryption failed: PKCS7Unpad failed after AES decryption")
- }
- return plaintext, err
- }
- // From https://leanpub.com/gocrypto/read#leanpub-auto-block-cipher-modes
- func PKCS7Unpad(in []byte) []byte {
- if len(in) == 0 {
- return nil
- }
- padding := in[len(in)-1]
- if int(padding) > len(in) || padding > aes.BlockSize {
- return nil
- } else if padding == 0 {
- return nil
- }
- for i := len(in) - 1; i > len(in)-int(padding)-1; i-- {
- if in[i] != padding {
- return nil
- }
- }
- return in[:len(in)-int(padding)]
- }
- func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
- pubBytes := FromECDSAPub(&p)
- return common.BytesToAddress(Sha3(pubBytes[1:])[12:])
- }
|