| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674 |
- // Copyright 2015 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package trie
- import (
- "bytes"
- crand "crypto/rand"
- mrand "math/rand"
- "sort"
- "testing"
- "time"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/ethdb/memorydb"
- )
- func init() {
- mrand.Seed(time.Now().Unix())
- }
- // makeProvers creates Merkle trie provers based on different implementations to
- // test all variations.
- func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
- var provers []func(key []byte) *memorydb.Database
- // Create a direct trie based Merkle prover
- provers = append(provers, func(key []byte) *memorydb.Database {
- proof := memorydb.New()
- trie.Prove(key, 0, proof)
- return proof
- })
- // Create a leaf iterator based Merkle prover
- provers = append(provers, func(key []byte) *memorydb.Database {
- proof := memorydb.New()
- if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
- for _, p := range it.Prove() {
- proof.Put(crypto.Keccak256(p), p)
- }
- }
- return proof
- })
- return provers
- }
- func TestProof(t *testing.T) {
- trie, vals := randomTrie(500)
- root := trie.Hash()
- for i, prover := range makeProvers(trie) {
- for _, kv := range vals {
- proof := prover(kv.k)
- if proof == nil {
- t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
- }
- val, err := VerifyProof(root, kv.k, proof)
- if err != nil {
- t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
- }
- if !bytes.Equal(val, kv.v) {
- t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
- }
- }
- }
- }
- func TestOneElementProof(t *testing.T) {
- trie := new(Trie)
- updateString(trie, "k", "v")
- for i, prover := range makeProvers(trie) {
- proof := prover([]byte("k"))
- if proof == nil {
- t.Fatalf("prover %d: nil proof", i)
- }
- if proof.Len() != 1 {
- t.Errorf("prover %d: proof should have one element", i)
- }
- val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
- if err != nil {
- t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
- }
- if !bytes.Equal(val, []byte("v")) {
- t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
- }
- }
- }
- func TestBadProof(t *testing.T) {
- trie, vals := randomTrie(800)
- root := trie.Hash()
- for i, prover := range makeProvers(trie) {
- for _, kv := range vals {
- proof := prover(kv.k)
- if proof == nil {
- t.Fatalf("prover %d: nil proof", i)
- }
- it := proof.NewIterator(nil, nil)
- for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
- it.Next()
- }
- key := it.Key()
- val, _ := proof.Get(key)
- proof.Delete(key)
- it.Release()
- mutateByte(val)
- proof.Put(crypto.Keccak256(val), val)
- if _, err := VerifyProof(root, kv.k, proof); err == nil {
- t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
- }
- }
- }
- }
- // Tests that missing keys can also be proven. The test explicitly uses a single
- // entry trie and checks for missing keys both before and after the single entry.
- func TestMissingKeyProof(t *testing.T) {
- trie := new(Trie)
- updateString(trie, "k", "v")
- for i, key := range []string{"a", "j", "l", "z"} {
- proof := memorydb.New()
- trie.Prove([]byte(key), 0, proof)
- if proof.Len() != 1 {
- t.Errorf("test %d: proof should have one element", i)
- }
- val, err := VerifyProof(trie.Hash(), []byte(key), proof)
- if err != nil {
- t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
- }
- if val != nil {
- t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
- }
- }
- }
- type entrySlice []*kv
- func (p entrySlice) Len() int { return len(p) }
- func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
- func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
- // TestRangeProof tests normal range proof with both edge proofs
- // as the existent proof. The test cases are generated randomly.
- func TestRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- for i := 0; i < 500; i++ {
- start := mrand.Intn(len(entries))
- end := mrand.Intn(len(entries)-start) + start
- if start == end {
- continue
- }
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
- if err != nil {
- t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
- }
- }
- }
- // TestRangeProof tests normal range proof with the first edge proof
- // as the non-existent proof. The test cases are generated randomly.
- func TestRangeProofWithNonExistentProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- for i := 0; i < 500; i++ {
- start := mrand.Intn(len(entries))
- end := mrand.Intn(len(entries)-start) + start
- if start == end {
- continue
- }
- firstProof, lastProof := memorydb.New(), memorydb.New()
- first := decreseKey(common.CopyBytes(entries[start].k))
- if start != 0 && bytes.Equal(first, entries[start-1].k) {
- continue
- }
- if err := trie.Prove(first, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- err := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof)
- if err != nil {
- t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
- }
- }
- }
- // TestRangeProofWithInvalidNonExistentProof tests such scenarios:
- // - The last edge proof is an non-existent proof
- // - There exists a gap between the first element and the left edge proof
- func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- // Case 1
- start, end := 100, 200
- first, last := decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[end].k))
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(first, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(last, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var k [][]byte
- var v [][]byte
- for i := start; i < end; i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- err := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
- if err == nil {
- t.Fatalf("Expected to detect the error, got nil")
- }
- // Case 2
- start, end = 100, 200
- first = decreseKey(common.CopyBytes(entries[start].k))
- firstProof, lastProof = memorydb.New(), memorydb.New()
- if err := trie.Prove(first, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- start = 105 // Gap created
- k = make([][]byte, 0)
- v = make([][]byte, 0)
- for i := start; i < end; i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- err = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
- if err == nil {
- t.Fatalf("Expected to detect the error, got nil")
- }
- }
- // TestOneElementRangeProof tests the proof with only one
- // element. The first edge proof can be existent one or
- // non-existent one.
- func TestOneElementRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- // One element with existent edge proof
- start := 1000
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- err := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // One element with non-existent edge proof
- start = 1000
- first := decreseKey(common.CopyBytes(entries[start].k))
- firstProof, lastProof = memorydb.New(), memorydb.New()
- if err := trie.Prove(first, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- err = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- // TestEmptyRangeProof tests the range proof with "no" element.
- // The first edge proof must be a non-existent proof.
- func TestEmptyRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- var cases = []struct {
- pos int
- err bool
- }{
- {len(entries) - 1, false},
- {500, true},
- }
- for _, c := range cases {
- firstProof := memorydb.New()
- first := increseKey(common.CopyBytes(entries[c.pos].k))
- if err := trie.Prove(first, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- err := VerifyRangeProof(trie.Hash(), first, nil, nil, firstProof, nil)
- if c.err && err == nil {
- t.Fatalf("Expected error, got nil")
- }
- if !c.err && err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- }
- // TestAllElementsProof tests the range proof with all elements.
- // The edge proofs can be nil.
- func TestAllElementsProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- var k [][]byte
- var v [][]byte
- for i := 0; i < len(entries); i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- err := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- // Even with edge proofs, it should still work.
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(entries[0].k, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- err = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- // TestSingleSideRangeProof tests the range starts from zero.
- func TestSingleSideRangeProof(t *testing.T) {
- trie := new(Trie)
- var entries entrySlice
- for i := 0; i < 4096; i++ {
- value := &kv{randBytes(32), randBytes(20), false}
- trie.Update(value.k, value.v)
- entries = append(entries, value)
- }
- sort.Sort(entries)
- var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
- for _, pos := range cases {
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(common.Hash{}.Bytes(), 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[pos].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- k := make([][]byte, 0)
- v := make([][]byte, 0)
- for i := 0; i <= pos; i++ {
- k = append(k, entries[i].k)
- v = append(v, entries[i].v)
- }
- err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof)
- if err != nil {
- t.Fatalf("Expected no error, got %v", err)
- }
- }
- }
- // TestBadRangeProof tests a few cases which the proof is wrong.
- // The prover is expected to detect the error.
- func TestBadRangeProof(t *testing.T) {
- trie, vals := randomTrie(4096)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- for i := 0; i < 500; i++ {
- start := mrand.Intn(len(entries))
- end := mrand.Intn(len(entries)-start) + start
- if start == end {
- continue
- }
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- testcase := mrand.Intn(6)
- var index int
- switch testcase {
- case 0:
- // Modified key
- index = mrand.Intn(end - start)
- keys[index] = randBytes(32) // In theory it can't be same
- case 1:
- // Modified val
- index = mrand.Intn(end - start)
- vals[index] = randBytes(20) // In theory it can't be same
- case 2:
- // Gapped entry slice
- // There are only two elements, skip it. Dropped any element
- // will lead to single edge proof which is always correct.
- if end-start <= 2 {
- continue
- }
- // If the dropped element is the first or last one and it's a
- // batch of small size elements. In this special case, it can
- // happen that the proof for the edge element is exactly same
- // with the first/last second element(since small values are
- // embedded in the parent). Avoid this case.
- index = mrand.Intn(end - start)
- if (index == end-start-1 || index == 0) && end <= 100 {
- continue
- }
- keys = append(keys[:index], keys[index+1:]...)
- vals = append(vals[:index], vals[index+1:]...)
- case 3:
- // Switched entry slice, same effect with gapped
- index = mrand.Intn(end - start)
- keys[index] = entries[len(entries)-1].k
- vals[index] = entries[len(entries)-1].v
- case 4:
- // Set random key to nil
- index = mrand.Intn(end - start)
- keys[index] = nil
- case 5:
- // Set random value to nil
- index = mrand.Intn(end - start)
- vals[index] = nil
- }
- err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
- if err == nil {
- t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
- }
- }
- }
- // TestGappedRangeProof focuses on the small trie with embedded nodes.
- // If the gapped node is embedded in the trie, it should be detected too.
- func TestGappedRangeProof(t *testing.T) {
- trie := new(Trie)
- var entries []*kv // Sorted entries
- for i := byte(0); i < 10; i++ {
- value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
- trie.Update(value.k, value.v)
- entries = append(entries, value)
- }
- first, last := 2, 8
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(entries[first].k, 0, firstProof); err != nil {
- t.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[last-1].k, 0, lastProof); err != nil {
- t.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var vals [][]byte
- for i := first; i < last; i++ {
- if i == (first+last)/2 {
- continue
- }
- keys = append(keys, entries[i].k)
- vals = append(vals, entries[i].v)
- }
- err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
- if err == nil {
- t.Fatal("expect error, got nil")
- }
- }
- // mutateByte changes one byte in b.
- func mutateByte(b []byte) {
- for r := mrand.Intn(len(b)); ; {
- new := byte(mrand.Intn(255))
- if new != b[r] {
- b[r] = new
- break
- }
- }
- }
- func increseKey(key []byte) []byte {
- for i := len(key) - 1; i >= 0; i-- {
- key[i]++
- if key[i] != 0x0 {
- break
- }
- }
- return key
- }
- func decreseKey(key []byte) []byte {
- for i := len(key) - 1; i >= 0; i-- {
- key[i]--
- if key[i] != 0xff {
- break
- }
- }
- return key
- }
- func BenchmarkProve(b *testing.B) {
- trie, vals := randomTrie(100)
- var keys []string
- for k := range vals {
- keys = append(keys, k)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- kv := vals[keys[i%len(keys)]]
- proofs := memorydb.New()
- if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
- b.Fatalf("zero length proof for %x", kv.k)
- }
- }
- }
- func BenchmarkVerifyProof(b *testing.B) {
- trie, vals := randomTrie(100)
- root := trie.Hash()
- var keys []string
- var proofs []*memorydb.Database
- for k := range vals {
- keys = append(keys, k)
- proof := memorydb.New()
- trie.Prove([]byte(k), 0, proof)
- proofs = append(proofs, proof)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- im := i % len(keys)
- if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
- b.Fatalf("key %x: %v", keys[im], err)
- }
- }
- }
- func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
- func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
- func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
- func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
- func benchmarkVerifyRangeProof(b *testing.B, size int) {
- trie, vals := randomTrie(8192)
- var entries entrySlice
- for _, kv := range vals {
- entries = append(entries, kv)
- }
- sort.Sort(entries)
- start := 2
- end := start + size
- firstProof, lastProof := memorydb.New(), memorydb.New()
- if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
- b.Fatalf("Failed to prove the first node %v", err)
- }
- if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
- b.Fatalf("Failed to prove the last node %v", err)
- }
- var keys [][]byte
- var values [][]byte
- for i := start; i < end; i++ {
- keys = append(keys, entries[i].k)
- values = append(values, entries[i].v)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- err := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof)
- if err != nil {
- b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
- }
- }
- }
- func randomTrie(n int) (*Trie, map[string]*kv) {
- trie := new(Trie)
- vals := make(map[string]*kv)
- for i := byte(0); i < 100; i++ {
- value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
- value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
- trie.Update(value.k, value.v)
- trie.Update(value2.k, value2.v)
- vals[string(value.k)] = value
- vals[string(value2.k)] = value2
- }
- for i := 0; i < n; i++ {
- value := &kv{randBytes(32), randBytes(20), false}
- trie.Update(value.k, value.v)
- vals[string(value.k)] = value
- }
- return trie, vals
- }
- func randBytes(n int) []byte {
- r := make([]byte, n)
- crand.Read(r)
- return r
- }
|