| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 |
- package p2p
- import (
- "bytes"
- "crypto/aes"
- "crypto/cipher"
- "crypto/ecdsa"
- "crypto/elliptic"
- "crypto/hmac"
- "crypto/rand"
- "errors"
- "fmt"
- "hash"
- "io"
- "net"
- "sync"
- "time"
- "github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/crypto/ecies"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
- "github.com/ethereum/go-ethereum/crypto/sha3"
- "github.com/ethereum/go-ethereum/p2p/discover"
- "github.com/ethereum/go-ethereum/rlp"
- )
- const (
- maxUint24 = ^uint32(0) >> 8
- sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
- sigLen = 65 // elliptic S256
- pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
- shaLen = 32 // hash length (for nonce etc)
- authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
- authRespLen = pubLen + shaLen + 1
- eciesBytes = 65 + 16 + 32
- encAuthMsgLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
- encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
- // total timeout for encryption handshake and protocol
- // handshake in both directions.
- handshakeTimeout = 5 * time.Second
- // This is the timeout for sending the disconnect reason.
- // This is shorter than the usual timeout because we don't want
- // to wait if the connection is known to be bad anyway.
- discWriteTimeout = 1 * time.Second
- )
- // rlpx is the transport protocol used by actual (non-test) connections.
- // It wraps the frame encoder with locks and read/write deadlines.
- type rlpx struct {
- fd net.Conn
- rmu, wmu sync.Mutex
- rw *rlpxFrameRW
- }
- func newRLPX(fd net.Conn) transport {
- fd.SetDeadline(time.Now().Add(handshakeTimeout))
- return &rlpx{fd: fd}
- }
- func (t *rlpx) ReadMsg() (Msg, error) {
- t.rmu.Lock()
- defer t.rmu.Unlock()
- t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
- return t.rw.ReadMsg()
- }
- func (t *rlpx) WriteMsg(msg Msg) error {
- t.wmu.Lock()
- defer t.wmu.Unlock()
- t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
- return t.rw.WriteMsg(msg)
- }
- func (t *rlpx) close(err error) {
- t.wmu.Lock()
- defer t.wmu.Unlock()
- // Tell the remote end why we're disconnecting if possible.
- if t.rw != nil {
- if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
- t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout))
- SendItems(t.rw, discMsg, r)
- }
- }
- t.fd.Close()
- }
- // doEncHandshake runs the protocol handshake using authenticated
- // messages. the protocol handshake is the first authenticated message
- // and also verifies whether the encryption handshake 'worked' and the
- // remote side actually provided the right public key.
- func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
- // Writing our handshake happens concurrently, we prefer
- // returning the handshake read error. If the remote side
- // disconnects us early with a valid reason, we should return it
- // as the error so it can be tracked elsewhere.
- werr := make(chan error, 1)
- go func() { werr <- Send(t.rw, handshakeMsg, our) }()
- if their, err = readProtocolHandshake(t.rw, our); err != nil {
- return nil, err
- }
- if err := <-werr; err != nil {
- return nil, fmt.Errorf("write error: %v", err)
- }
- return their, nil
- }
- func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
- msg, err := rw.ReadMsg()
- if err != nil {
- return nil, err
- }
- if msg.Size > baseProtocolMaxMsgSize {
- return nil, fmt.Errorf("message too big")
- }
- if msg.Code == discMsg {
- // Disconnect before protocol handshake is valid according to the
- // spec and we send it ourself if the posthanshake checks fail.
- // We can't return the reason directly, though, because it is echoed
- // back otherwise. Wrap it in a string instead.
- var reason [1]DiscReason
- rlp.Decode(msg.Payload, &reason)
- return nil, reason[0]
- }
- if msg.Code != handshakeMsg {
- return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
- }
- var hs protoHandshake
- if err := msg.Decode(&hs); err != nil {
- return nil, err
- }
- // validate handshake info
- if hs.Version != our.Version {
- return nil, DiscIncompatibleVersion
- }
- if (hs.ID == discover.NodeID{}) {
- return nil, DiscInvalidIdentity
- }
- return &hs, nil
- }
- func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
- var (
- sec secrets
- err error
- )
- if dial == nil {
- sec, err = receiverEncHandshake(t.fd, prv, nil)
- } else {
- sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil)
- }
- if err != nil {
- return discover.NodeID{}, err
- }
- t.wmu.Lock()
- t.rw = newRLPXFrameRW(t.fd, sec)
- t.wmu.Unlock()
- return sec.RemoteID, nil
- }
- // encHandshake contains the state of the encryption handshake.
- type encHandshake struct {
- initiator bool
- remoteID discover.NodeID
- remotePub *ecies.PublicKey // remote-pubk
- initNonce, respNonce []byte // nonce
- randomPrivKey *ecies.PrivateKey // ecdhe-random
- remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
- }
- // secrets represents the connection secrets
- // which are negotiated during the encryption handshake.
- type secrets struct {
- RemoteID discover.NodeID
- AES, MAC []byte
- EgressMAC, IngressMAC hash.Hash
- Token []byte
- }
- // secrets is called after the handshake is completed.
- // It extracts the connection secrets from the handshake values.
- func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
- ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
- if err != nil {
- return secrets{}, err
- }
- // derive base secrets from ephemeral key agreement
- sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
- aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
- s := secrets{
- RemoteID: h.remoteID,
- AES: aesSecret,
- MAC: crypto.Sha3(ecdheSecret, aesSecret),
- Token: crypto.Sha3(sharedSecret),
- }
- // setup sha3 instances for the MACs
- mac1 := sha3.NewKeccak256()
- mac1.Write(xor(s.MAC, h.respNonce))
- mac1.Write(auth)
- mac2 := sha3.NewKeccak256()
- mac2.Write(xor(s.MAC, h.initNonce))
- mac2.Write(authResp)
- if h.initiator {
- s.EgressMAC, s.IngressMAC = mac1, mac2
- } else {
- s.EgressMAC, s.IngressMAC = mac2, mac1
- }
- return s, nil
- }
- func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
- return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
- }
- // initiatorEncHandshake negotiates a session token on conn.
- // it should be called on the dialing side of the connection.
- //
- // prv is the local client's private key.
- // token is the token from a previous session with this node.
- func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
- h, err := newInitiatorHandshake(remoteID)
- if err != nil {
- return s, err
- }
- auth, err := h.authMsg(prv, token)
- if err != nil {
- return s, err
- }
- if _, err = conn.Write(auth); err != nil {
- return s, err
- }
- response := make([]byte, encAuthRespLen)
- if _, err = io.ReadFull(conn, response); err != nil {
- return s, err
- }
- if err := h.decodeAuthResp(response, prv); err != nil {
- return s, err
- }
- return h.secrets(auth, response)
- }
- func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
- // generate random initiator nonce
- n := make([]byte, shaLen)
- if _, err := rand.Read(n); err != nil {
- return nil, err
- }
- // generate random keypair to use for signing
- randpriv, err := ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
- if err != nil {
- return nil, err
- }
- rpub, err := remoteID.Pubkey()
- if err != nil {
- return nil, fmt.Errorf("bad remoteID: %v", err)
- }
- h := &encHandshake{
- initiator: true,
- remoteID: remoteID,
- remotePub: ecies.ImportECDSAPublic(rpub),
- initNonce: n,
- randomPrivKey: randpriv,
- }
- return h, nil
- }
- // authMsg creates an encrypted initiator handshake message.
- func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
- var tokenFlag byte
- if token == nil {
- // no session token found means we need to generate shared secret.
- // ecies shared secret is used as initial session token for new peers
- // generate shared key from prv and remote pubkey
- var err error
- if token, err = h.ecdhShared(prv); err != nil {
- return nil, err
- }
- } else {
- // for known peers, we use stored token from the previous session
- tokenFlag = 0x01
- }
- // sign known message:
- // ecdh-shared-secret^nonce for new peers
- // token^nonce for old peers
- signed := xor(token, h.initNonce)
- signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
- if err != nil {
- return nil, err
- }
- // encode auth message
- // signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
- msg := make([]byte, authMsgLen)
- n := copy(msg, signature)
- n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
- n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
- n += copy(msg[n:], h.initNonce)
- msg[n] = tokenFlag
- // encrypt auth message using remote-pubk
- return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
- }
- // decodeAuthResp decode an encrypted authentication response message.
- func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
- msg, err := crypto.Decrypt(prv, auth)
- if err != nil {
- return fmt.Errorf("could not decrypt auth response (%v)", err)
- }
- h.respNonce = msg[pubLen : pubLen+shaLen]
- h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
- if err != nil {
- return err
- }
- // ignore token flag for now
- return nil
- }
- // receiverEncHandshake negotiates a session token on conn.
- // it should be called on the listening side of the connection.
- //
- // prv is the local client's private key.
- // token is the token from a previous session with this node.
- func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
- // read remote auth sent by initiator.
- auth := make([]byte, encAuthMsgLen)
- if _, err := io.ReadFull(conn, auth); err != nil {
- return s, err
- }
- h, err := decodeAuthMsg(prv, token, auth)
- if err != nil {
- return s, err
- }
- // send auth response
- resp, err := h.authResp(prv, token)
- if err != nil {
- return s, err
- }
- if _, err = conn.Write(resp); err != nil {
- return s, err
- }
- return h.secrets(auth, resp)
- }
- func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
- var err error
- h := new(encHandshake)
- // generate random keypair for session
- h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
- if err != nil {
- return nil, err
- }
- // generate random nonce
- h.respNonce = make([]byte, shaLen)
- if _, err = rand.Read(h.respNonce); err != nil {
- return nil, err
- }
- msg, err := crypto.Decrypt(prv, auth)
- if err != nil {
- return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
- }
- // decode message parameters
- // signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
- h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
- copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
- rpub, err := h.remoteID.Pubkey()
- if err != nil {
- return nil, fmt.Errorf("bad remoteID: %#v", err)
- }
- h.remotePub = ecies.ImportECDSAPublic(rpub)
- // recover remote random pubkey from signed message.
- if token == nil {
- // TODO: it is an error if the initiator has a token and we don't. check that.
- // no session token means we need to generate shared secret.
- // ecies shared secret is used as initial session token for new peers.
- // generate shared key from prv and remote pubkey.
- if token, err = h.ecdhShared(prv); err != nil {
- return nil, err
- }
- }
- signedMsg := xor(token, h.initNonce)
- remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
- if err != nil {
- return nil, err
- }
- h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
- return h, nil
- }
- // authResp generates the encrypted authentication response message.
- func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
- // responder auth message
- // E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
- resp := make([]byte, authRespLen)
- n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
- n += copy(resp[n:], h.respNonce)
- if token == nil {
- resp[n] = 0
- } else {
- resp[n] = 1
- }
- // encrypt using remote-pubk
- return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
- }
- // importPublicKey unmarshals 512 bit public keys.
- func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
- var pubKey65 []byte
- switch len(pubKey) {
- case 64:
- // add 'uncompressed key' flag
- pubKey65 = append([]byte{0x04}, pubKey...)
- case 65:
- pubKey65 = pubKey
- default:
- return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
- }
- // TODO: fewer pointless conversions
- return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
- }
- func exportPubkey(pub *ecies.PublicKey) []byte {
- if pub == nil {
- panic("nil pubkey")
- }
- return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
- }
- func xor(one, other []byte) (xor []byte) {
- xor = make([]byte, len(one))
- for i := 0; i < len(one); i++ {
- xor[i] = one[i] ^ other[i]
- }
- return xor
- }
- var (
- // this is used in place of actual frame header data.
- // TODO: replace this when Msg contains the protocol type code.
- zeroHeader = []byte{0xC2, 0x80, 0x80}
- // sixteen zero bytes
- zero16 = make([]byte, 16)
- )
- // rlpxFrameRW implements a simplified version of RLPx framing.
- // chunked messages are not supported and all headers are equal to
- // zeroHeader.
- //
- // rlpxFrameRW is not safe for concurrent use from multiple goroutines.
- type rlpxFrameRW struct {
- conn io.ReadWriter
- enc cipher.Stream
- dec cipher.Stream
- macCipher cipher.Block
- egressMAC hash.Hash
- ingressMAC hash.Hash
- }
- func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
- macc, err := aes.NewCipher(s.MAC)
- if err != nil {
- panic("invalid MAC secret: " + err.Error())
- }
- encc, err := aes.NewCipher(s.AES)
- if err != nil {
- panic("invalid AES secret: " + err.Error())
- }
- // we use an all-zeroes IV for AES because the key used
- // for encryption is ephemeral.
- iv := make([]byte, encc.BlockSize())
- return &rlpxFrameRW{
- conn: conn,
- enc: cipher.NewCTR(encc, iv),
- dec: cipher.NewCTR(encc, iv),
- macCipher: macc,
- egressMAC: s.EgressMAC,
- ingressMAC: s.IngressMAC,
- }
- }
- func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
- ptype, _ := rlp.EncodeToBytes(msg.Code)
- // write header
- headbuf := make([]byte, 32)
- fsize := uint32(len(ptype)) + msg.Size
- if fsize > maxUint24 {
- return errors.New("message size overflows uint24")
- }
- putInt24(fsize, headbuf) // TODO: check overflow
- copy(headbuf[3:], zeroHeader)
- rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
- // write header MAC
- copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
- if _, err := rw.conn.Write(headbuf); err != nil {
- return err
- }
- // write encrypted frame, updating the egress MAC hash with
- // the data written to conn.
- tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
- if _, err := tee.Write(ptype); err != nil {
- return err
- }
- if _, err := io.Copy(tee, msg.Payload); err != nil {
- return err
- }
- if padding := fsize % 16; padding > 0 {
- if _, err := tee.Write(zero16[:16-padding]); err != nil {
- return err
- }
- }
- // write frame MAC. egress MAC hash is up to date because
- // frame content was written to it as well.
- fmacseed := rw.egressMAC.Sum(nil)
- mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
- _, err := rw.conn.Write(mac)
- return err
- }
- func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
- // read the header
- headbuf := make([]byte, 32)
- if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
- return msg, err
- }
- // verify header mac
- shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
- if !hmac.Equal(shouldMAC, headbuf[16:]) {
- return msg, errors.New("bad header MAC")
- }
- rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
- fsize := readInt24(headbuf)
- // ignore protocol type for now
- // read the frame content
- var rsize = fsize // frame size rounded up to 16 byte boundary
- if padding := fsize % 16; padding > 0 {
- rsize += 16 - padding
- }
- framebuf := make([]byte, rsize)
- if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
- return msg, err
- }
- // read and validate frame MAC. we can re-use headbuf for that.
- rw.ingressMAC.Write(framebuf)
- fmacseed := rw.ingressMAC.Sum(nil)
- if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
- return msg, err
- }
- shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
- if !hmac.Equal(shouldMAC, headbuf[:16]) {
- return msg, errors.New("bad frame MAC")
- }
- // decrypt frame content
- rw.dec.XORKeyStream(framebuf, framebuf)
- // decode message code
- content := bytes.NewReader(framebuf[:fsize])
- if err := rlp.Decode(content, &msg.Code); err != nil {
- return msg, err
- }
- msg.Size = uint32(content.Len())
- msg.Payload = content
- return msg, nil
- }
- // updateMAC reseeds the given hash with encrypted seed.
- // it returns the first 16 bytes of the hash sum after seeding.
- func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
- aesbuf := make([]byte, aes.BlockSize)
- block.Encrypt(aesbuf, mac.Sum(nil))
- for i := range aesbuf {
- aesbuf[i] ^= seed[i]
- }
- mac.Write(aesbuf)
- return mac.Sum(nil)[:16]
- }
- func readInt24(b []byte) uint32 {
- return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
- }
- func putInt24(v uint32, b []byte) {
- b[0] = byte(v >> 16)
- b[1] = byte(v >> 8)
- b[2] = byte(v)
- }
|