// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "sync/atomic" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/params" ) const prefetchThread = 2 // statePrefetcher is a basic Prefetcher, which blindly executes a block on top // of an arbitrary state with the goal of prefetching potentially useful state // data from disk before the main block processor start executing. type statePrefetcher struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus.Engine // Consensus engine used for block rewards } // NewStatePrefetcher initialises a new statePrefetcher. func NewStatePrefetcher(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *statePrefetcher { return &statePrefetcher{ config: config, bc: bc, engine: engine, } } // Prefetch processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb, but any changes are discarded. The // only goal is to pre-cache transaction signatures and snapshot clean state. func (p *statePrefetcher) Prefetch(block *types.Block, statedb *state.StateDB, cfg vm.Config, interrupt *uint32) { var ( header = block.Header() signer = types.MakeSigner(p.config, header.Number) ) transactions := block.Transactions() sortTransactions := make([][]*types.Transaction, prefetchThread) for i := 0; i < prefetchThread; i++ { sortTransactions[i] = make([]*types.Transaction, 0, len(transactions)/prefetchThread) } for idx := range transactions { threadIdx := idx % prefetchThread sortTransactions[threadIdx] = append(sortTransactions[threadIdx], transactions[idx]) } // No need to execute the first batch, since the main processor will do it. for i := 0; i < prefetchThread; i++ { go func(idx int) { newStatedb := statedb.Copy() gaspool := new(GasPool).AddGas(block.GasLimit()) blockContext := NewEVMBlockContext(header, p.bc, nil) evm := vm.NewEVM(blockContext, vm.TxContext{}, statedb, p.config, cfg) // Iterate over and process the individual transactions for i, tx := range sortTransactions[idx] { // If block precaching was interrupted, abort if interrupt != nil && atomic.LoadUint32(interrupt) == 1 { return } // Convert the transaction into an executable message and pre-cache its sender msg, err := tx.AsMessage(signer) if err != nil { return // Also invalid block, bail out } newStatedb.Prepare(tx.Hash(), header.Hash(), i) precacheTransaction(msg, p.config, gaspool, newStatedb, header, evm) } }(i) } } // precacheTransaction attempts to apply a transaction to the given state database // and uses the input parameters for its environment. The goal is not to execute // the transaction successfully, rather to warm up touched data slots. func precacheTransaction(msg types.Message, config *params.ChainConfig, gaspool *GasPool, statedb *state.StateDB, header *types.Header, evm *vm.EVM) { // Update the evm with the new transaction context. evm.Reset(NewEVMTxContext(msg), statedb) // Add addresses to access list if applicable ApplyMessage(evm, msg, gaspool) }