فهرست منبع

trie: extend range proof (#21250)

* trie: support non-existent right proof

* trie: improve test

* trie: minor linter fix

Co-authored-by: Péter Szilágyi <peterke@gmail.com>
gary rong 5 سال پیش
والد
کامیت
e5defccd58
2فایلهای تغییر یافته به همراه395 افزوده شده و 182 حذف شده
  1. 140 81
      trie/proof.go
  2. 255 101
      trie/proof_test.go

+ 140 - 81
trie/proof.go

@@ -129,10 +129,11 @@ func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader)
 	}
 }
 
-// proofToPath converts a merkle proof to trie node path.
-// The main purpose of this function is recovering a node
-// path from the merkle proof stream. All necessary nodes
-// will be resolved and leave the remaining as hashnode.
+// proofToPath converts a merkle proof to trie node path. The main purpose of
+// this function is recovering a node path from the merkle proof stream. All
+// necessary nodes will be resolved and leave the remaining as hashnode.
+//
+// The given edge proof is allowed to be an existent or non-existent proof.
 func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
 	// resolveNode retrieves and resolves trie node from merkle proof stream
 	resolveNode := func(hash common.Hash) (node, error) {
@@ -205,54 +206,61 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
 }
 
 // unsetInternal removes all internal node references(hashnode, embedded node).
-// It should be called after a trie is constructed with two edge proofs. Also
-// the given boundary keys must be the one used to construct the edge proofs.
+// It should be called after a trie is constructed with two edge paths. Also
+// the given boundary keys must be the one used to construct the edge paths.
 //
 // It's the key step for range proof. All visited nodes should be marked dirty
 // since the node content might be modified. Besides it can happen that some
 // fullnodes only have one child which is disallowed. But if the proof is valid,
 // the missing children will be filled, otherwise it will be thrown anyway.
+//
+// Note we have the assumption here the given boundary keys are different
+// and right is larger than left.
 func unsetInternal(n node, left []byte, right []byte) error {
 	left, right = keybytesToHex(left), keybytesToHex(right)
 
-	// todo(rjl493456442) different length edge keys should be supported
-	if len(left) != len(right) {
-		return errors.New("inconsistent edge path")
-	}
 	// Step down to the fork point. There are two scenarios can happen:
-	// - the fork point is a shortnode: the left proof MUST point to a
-	//   non-existent key and the key doesn't match with the shortnode
-	// - the fork point is a fullnode: the left proof can point to an
-	//   existent key or not.
+	// - the fork point is a shortnode: either the key of left proof or
+	//   right proof doesn't match with shortnode's key.
+	// - the fork point is a fullnode: both two edge proofs are allowed
+	//   to point to a non-existent key.
 	var (
 		pos    = 0
 		parent node
+
+		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
+		shortForkLeft, shortForkRight int
 	)
 findFork:
 	for {
 		switch rn := (n).(type) {
 		case *shortNode:
-			// The right proof must point to an existent key.
-			if len(right)-pos < len(rn.Key) || !bytes.Equal(rn.Key, right[pos:pos+len(rn.Key)]) {
-				return errors.New("invalid edge path")
-			}
 			rn.flags = nodeFlag{dirty: true}
-			// Special case, the non-existent proof points to the same path
-			// as the existent proof, but the path of existent proof is longer.
-			// In this case, the fork point is this shortnode.
-			if len(left)-pos < len(rn.Key) || !bytes.Equal(rn.Key, left[pos:pos+len(rn.Key)]) {
+
+			// If either the key of left proof or right proof doesn't match with
+			// shortnode, stop here and the forkpoint is the shortnode.
+			if len(left)-pos < len(rn.Key) {
+				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
+			} else {
+				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
+			}
+			if len(right)-pos < len(rn.Key) {
+				shortForkRight = bytes.Compare(right[pos:], rn.Key)
+			} else {
+				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
+			}
+			if shortForkLeft != 0 || shortForkRight != 0 {
 				break findFork
 			}
 			parent = n
 			n, pos = rn.Val, pos+len(rn.Key)
 		case *fullNode:
-			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
-			// The right proof must point to an existent key.
-			if rightnode == nil {
-				return errors.New("invalid edge path")
-			}
 			rn.flags = nodeFlag{dirty: true}
-			if leftnode != rightnode {
+
+			// If either the node pointed by left proof or right proof is nil,
+			// stop here and the forkpoint is the fullnode.
+			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
+			if leftnode == nil || rightnode == nil || leftnode != rightnode {
 				break findFork
 			}
 			parent = n
@@ -263,12 +271,42 @@ findFork:
 	}
 	switch rn := n.(type) {
 	case *shortNode:
-		if _, ok := rn.Val.(valueNode); ok {
-			parent.(*fullNode).Children[right[pos-1]] = nil
+		// There can have these five scenarios:
+		// - both proofs are less than the trie path => no valid range
+		// - both proofs are greater than the trie path => no valid range
+		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
+		// - left proof points to the shortnode, but right proof is greater
+		// - right proof points to the shortnode, but left proof is less
+		if shortForkLeft == -1 && shortForkRight == -1 {
+			return errors.New("empty range")
+		}
+		if shortForkLeft == 1 && shortForkRight == 1 {
+			return errors.New("empty range")
+		}
+		if shortForkLeft != 0 && shortForkRight != 0 {
+			parent.(*fullNode).Children[left[pos-1]] = nil
 			return nil
 		}
-		return unset(rn, rn.Val, right[pos:], len(rn.Key), true)
+		// Only one proof points to non-existent key.
+		if shortForkRight != 0 {
+			// Unset left proof's path
+			if _, ok := rn.Val.(valueNode); ok {
+				parent.(*fullNode).Children[left[pos-1]] = nil
+				return nil
+			}
+			return unset(rn, rn.Val, left[pos:], len(rn.Key), false)
+		}
+		if shortForkLeft != 0 {
+			// Unset right proof's path.
+			if _, ok := rn.Val.(valueNode); ok {
+				parent.(*fullNode).Children[right[pos-1]] = nil
+				return nil
+			}
+			return unset(rn, rn.Val, right[pos:], len(rn.Key), true)
+		}
+		return nil
 	case *fullNode:
+		// unset all internal nodes in the forkpoint
 		for i := left[pos] + 1; i < right[pos]; i++ {
 			rn.Children[i] = nil
 		}
@@ -285,19 +323,17 @@ findFork:
 }
 
 // unset removes all internal node references either the left most or right most.
-// If we try to unset all right most references, it can meet these scenarios:
+// It can meet these scenarios:
 //
-// - The given path is existent in the trie, unset the associated shortnode
+// - The given path is existent in the trie, unset the associated nodes with the
+//   specific direction
 // - The given path is non-existent in the trie
 //   - the fork point is a fullnode, the corresponding child pointed by path
 //     is nil, return
-//   - the fork point is a shortnode, the key of shortnode is less than path,
+//   - the fork point is a shortnode, the shortnode is included in the range,
 //     keep the entire branch and return.
-//   - the fork point is a shortnode, the key of shortnode is greater than path,
+//   - the fork point is a shortnode, the shortnode is excluded in the range,
 //     unset the entire branch.
-//
-// If we try to unset all left most references, then the given path should
-// be existent.
 func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
 	switch cld := child.(type) {
 	case *fullNode:
@@ -317,18 +353,29 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error
 		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
 			// Find the fork point, it's an non-existent branch.
 			if removeLeft {
-				return errors.New("invalid right edge proof")
-			}
-			if bytes.Compare(cld.Key, key[pos:]) > 0 {
-				// The key of fork shortnode is greater than the
-				// path(it belongs to the range), unset the entrie
-				// branch. The parent must be a fullnode.
-				fn := parent.(*fullNode)
-				fn.Children[key[pos-1]] = nil
+				if bytes.Compare(cld.Key, key[pos:]) < 0 {
+					// The key of fork shortnode is less than the path
+					// (it belongs to the range), unset the entrie
+					// branch. The parent must be a fullnode.
+					fn := parent.(*fullNode)
+					fn.Children[key[pos-1]] = nil
+				} else {
+					// The key of fork shortnode is greater than the
+					// path(it doesn't belong to the range), keep
+					// it with the cached hash available.
+				}
 			} else {
-				// The key of fork shortnode is less than the
-				// path(it doesn't belong to the range), keep
-				// it with the cached hash available.
+				if bytes.Compare(cld.Key, key[pos:]) > 0 {
+					// The key of fork shortnode is greater than the
+					// path(it belongs to the range), unset the entrie
+					// branch. The parent must be a fullnode.
+					fn := parent.(*fullNode)
+					fn.Children[key[pos-1]] = nil
+				} else {
+					// The key of fork shortnode is less than the
+					// path(it doesn't belong to the range), keep
+					// it with the cached hash available.
+				}
 			}
 			return nil
 		}
@@ -340,11 +387,8 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error
 		cld.flags = nodeFlag{dirty: true}
 		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
 	case nil:
-		// If the node is nil, it's a child of the fork point
-		// fullnode(it's an non-existent branch).
-		if removeLeft {
-			return errors.New("invalid right edge proof")
-		}
+		// If the node is nil, then it's a child of the fork point
+		// fullnode(it's a non-existent branch).
 		return nil
 	default:
 		panic("it shouldn't happen") // hashNode, valueNode
@@ -380,34 +424,37 @@ func hasRightElement(node node, key []byte) bool {
 	return false
 }
 
-// VerifyRangeProof checks whether the given leaf nodes and edge proofs
-// can prove the given trie leaves range is matched with given root hash
-// and the range is consecutive(no gap inside) and monotonic increasing.
+// VerifyRangeProof checks whether the given leaf nodes and edge proof
+// can prove the given trie leaves range is matched with the specific root.
+// Besides, the range should be consecutive(no gap inside) and monotonic
+// increasing.
 //
-// Note the given first edge proof can be non-existing proof. For example
-// the first proof is for an non-existent values 0x03. The given batch
-// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove. But the
-// last edge proof should always be an existent proof.
+// Note the given proof actually contains two edge proofs. Both of them can
+// be non-existent proofs. For example the first proof is for a non-existent
+// key 0x03, the last proof is for a non-existent key 0x10. The given batch
+// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
+// batch is valid.
 //
 // The firstKey is paired with firstProof, not necessarily the same as keys[0]
-// (unless firstProof is an existent proof).
+// (unless firstProof is an existent proof). Similarly, lastKey and lastProof
+// are paired.
 //
 // Expect the normal case, this function can also be used to verify the following
 // range proofs:
 //
-// - All elements proof. In this case the left and right proof can be nil, but the
-//   range should be all the leaves in the trie.
+// - All elements proof. In this case the proof can be nil, but the range should
+//   be all the leaves in the trie.
 //
-// - One element proof. In this case no matter the left edge proof is a non-existent
+// - One element proof. In this case no matter the edge proof is a non-existent
 //   proof or not, we can always verify the correctness of the proof.
 //
-// - Zero element proof(left edge proof should be a non-existent proof). In this
-//   case if there are still some other leaves available on the right side, then
+// - Zero element proof. In this case a single non-existent proof is enough to prove.
+//   Besides, if there are still some other leaves available on the right side, then
 //   an error will be returned.
 //
 // Except returning the error to indicate the proof is valid or not, the function will
 // also return a flag to indicate whether there exists more accounts/slots in the trie.
-func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) (error, bool) {
+func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (error, bool) {
 	if len(keys) != len(values) {
 		return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)), false
 	}
@@ -419,7 +466,7 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu
 	}
 	// Special case, there is no edge proof at all. The given range is expected
 	// to be the whole leaf-set in the trie.
-	if firstProof == nil && lastProof == nil {
+	if proof == nil {
 		emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New()))
 		if err != nil {
 			return err, false
@@ -432,10 +479,10 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu
 		}
 		return nil, false // no more element.
 	}
-	// Special case, there is a provided left edge proof and zero key/value
+	// Special case, there is a provided edge proof but zero key/value
 	// pairs, ensure there are no more accounts / slots in the trie.
 	if len(keys) == 0 {
-		root, val, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
+		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
 		if err != nil {
 			return err, false
 		}
@@ -444,35 +491,47 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu
 		}
 		return nil, false
 	}
-	// Special case, there is only one element and left edge
-	// proof is an existent one.
-	if len(keys) == 1 && bytes.Equal(keys[0], firstKey) {
-		root, val, err := proofToPath(rootHash, nil, firstKey, firstProof, false)
+	// Special case, there is only one element and two edge keys are same.
+	// In this case, we can't construct two edge paths. So handle it here.
+	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
+		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
 		if err != nil {
 			return err, false
 		}
+		if !bytes.Equal(firstKey, keys[0]) {
+			return errors.New("correct proof but invalid key"), false
+		}
 		if !bytes.Equal(val, values[0]) {
-			return fmt.Errorf("correct proof but invalid data"), false
+			return errors.New("correct proof but invalid data"), false
 		}
-		return nil, hasRightElement(root, keys[0])
+		return nil, hasRightElement(root, firstKey)
+	}
+	// Ok, in all other cases, we require two edge paths available.
+	// First check the validity of edge keys.
+	if bytes.Compare(firstKey, lastKey) >= 0 {
+		return errors.New("invalid edge keys"), false
+	}
+	// todo(rjl493456442) different length edge keys should be supported
+	if len(firstKey) != len(lastKey) {
+		return errors.New("inconsistent edge keys"), false
 	}
 	// Convert the edge proofs to edge trie paths. Then we can
 	// have the same tree architecture with the original one.
 	// For the first edge proof, non-existent proof is allowed.
-	root, _, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
+	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
 	if err != nil {
 		return err, false
 	}
 	// Pass the root node here, the second path will be merged
 	// with the first one. For the last edge proof, non-existent
-	// proof is not allowed.
-	root, _, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false)
+	// proof is also allowed.
+	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
 	if err != nil {
 		return err, false
 	}
 	// Remove all internal references. All the removed parts should
 	// be re-filled(or re-constructed) by the given leaves range.
-	if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil {
+	if err := unsetInternal(root, firstKey, lastKey); err != nil {
 		return err, false
 	}
 	// Rebuild the trie with the leave stream, the shape of trie

+ 255 - 101
trie/proof_test.go

@@ -166,15 +166,13 @@ func TestRangeProof(t *testing.T) {
 	sort.Sort(entries)
 	for i := 0; i < 500; i++ {
 		start := mrand.Intn(len(entries))
-		end := mrand.Intn(len(entries)-start) + start
-		if start == end {
-			continue
-		}
-		firstProof, lastProof := memorydb.New(), memorydb.New()
-		if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
+		end := mrand.Intn(len(entries)-start) + start + 1
+
+		proof := memorydb.New()
+		if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 			t.Fatalf("Failed to prove the first node %v", err)
 		}
-		if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
+		if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 			t.Fatalf("Failed to prove the last node %v", err)
 		}
 		var keys [][]byte
@@ -183,15 +181,15 @@ func TestRangeProof(t *testing.T) {
 			keys = append(keys, entries[i].k)
 			vals = append(vals, entries[i].v)
 		}
-		err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
+		err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
 		if err != nil {
 			t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
 		}
 	}
 }
 
-// TestRangeProof tests normal range proof with the first edge proof
-// as the non-existent proof. The test cases are generated randomly.
+// TestRangeProof tests normal range proof with two non-existent proofs.
+// The test cases are generated randomly.
 func TestRangeProofWithNonExistentProof(t *testing.T) {
 	trie, vals := randomTrie(4096)
 	var entries entrySlice
@@ -201,20 +199,31 @@ func TestRangeProofWithNonExistentProof(t *testing.T) {
 	sort.Sort(entries)
 	for i := 0; i < 500; i++ {
 		start := mrand.Intn(len(entries))
-		end := mrand.Intn(len(entries)-start) + start
-		if start == end {
-			continue
-		}
-		firstProof, lastProof := memorydb.New(), memorydb.New()
+		end := mrand.Intn(len(entries)-start) + start + 1
+		proof := memorydb.New()
 
+		// Short circuit if the decreased key is same with the previous key
 		first := decreseKey(common.CopyBytes(entries[start].k))
 		if start != 0 && bytes.Equal(first, entries[start-1].k) {
 			continue
 		}
-		if err := trie.Prove(first, 0, firstProof); err != nil {
+		// Short circuit if the decreased key is underflow
+		if bytes.Compare(first, entries[start].k) > 0 {
+			continue
+		}
+		// Short circuit if the increased key is same with the next key
+		last := increseKey(common.CopyBytes(entries[end-1].k))
+		if end != len(entries) && bytes.Equal(last, entries[end].k) {
+			continue
+		}
+		// Short circuit if the increased key is overflow
+		if bytes.Compare(last, entries[end-1].k) < 0 {
+			continue
+		}
+		if err := trie.Prove(first, 0, proof); err != nil {
 			t.Fatalf("Failed to prove the first node %v", err)
 		}
-		if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
+		if err := trie.Prove(last, 0, proof); err != nil {
 			t.Fatalf("Failed to prove the last node %v", err)
 		}
 		var keys [][]byte
@@ -223,16 +232,36 @@ func TestRangeProofWithNonExistentProof(t *testing.T) {
 			keys = append(keys, entries[i].k)
 			vals = append(vals, entries[i].v)
 		}
-		err, _ := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof)
+		err, _ := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
 		if err != nil {
 			t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
 		}
 	}
+	// Special case, two edge proofs for two edge key.
+	proof := memorydb.New()
+	first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
+	last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
+	if err := trie.Prove(first, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the first node %v", err)
+	}
+	if err := trie.Prove(last, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the last node %v", err)
+	}
+	var k [][]byte
+	var v [][]byte
+	for i := 0; i < len(entries); i++ {
+		k = append(k, entries[i].k)
+		v = append(v, entries[i].v)
+	}
+	err, _ := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
+	if err != nil {
+		t.Fatal("Failed to verify whole rang with non-existent edges")
+	}
 }
 
 // TestRangeProofWithInvalidNonExistentProof tests such scenarios:
-// - The last edge proof is an non-existent proof
 // - There exists a gap between the first element and the left edge proof
+// - There exists a gap between the last element and the right edge proof
 func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
 	trie, vals := randomTrie(4096)
 	var entries entrySlice
@@ -243,44 +272,45 @@ func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
 
 	// Case 1
 	start, end := 100, 200
-	first, last := decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[end].k))
-	firstProof, lastProof := memorydb.New(), memorydb.New()
-	if err := trie.Prove(first, 0, firstProof); err != nil {
+	first := decreseKey(common.CopyBytes(entries[start].k))
+
+	proof := memorydb.New()
+	if err := trie.Prove(first, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the first node %v", err)
 	}
-	if err := trie.Prove(last, 0, lastProof); err != nil {
+	if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the last node %v", err)
 	}
-	var k [][]byte
-	var v [][]byte
+	start = 105 // Gap created
+	k := make([][]byte, 0)
+	v := make([][]byte, 0)
 	for i := start; i < end; i++ {
 		k = append(k, entries[i].k)
 		v = append(v, entries[i].v)
 	}
-	err, _ := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
+	err, _ := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
 	if err == nil {
 		t.Fatalf("Expected to detect the error, got nil")
 	}
 
 	// Case 2
 	start, end = 100, 200
-	first = decreseKey(common.CopyBytes(entries[start].k))
-
-	firstProof, lastProof = memorydb.New(), memorydb.New()
-	if err := trie.Prove(first, 0, firstProof); err != nil {
+	last := increseKey(common.CopyBytes(entries[end-1].k))
+	proof = memorydb.New()
+	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the first node %v", err)
 	}
-	if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
+	if err := trie.Prove(last, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the last node %v", err)
 	}
-	start = 105 // Gap created
+	end = 195 // Capped slice
 	k = make([][]byte, 0)
 	v = make([][]byte, 0)
 	for i := start; i < end; i++ {
 		k = append(k, entries[i].k)
 		v = append(v, entries[i].v)
 	}
-	err, _ = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
+	err, _ = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
 	if err == nil {
 		t.Fatalf("Expected to detect the error, got nil")
 	}
@@ -297,31 +327,59 @@ func TestOneElementRangeProof(t *testing.T) {
 	}
 	sort.Sort(entries)
 
-	// One element with existent edge proof
+	// One element with existent edge proof, both edge proofs
+	// point to the SAME key.
 	start := 1000
-	firstProof, lastProof := memorydb.New(), memorydb.New()
-	if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
+	proof := memorydb.New()
+	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the first node %v", err)
 	}
-	if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
+	err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
+	if err != nil {
+		t.Fatalf("Expected no error, got %v", err)
+	}
+
+	// One element with left non-existent edge proof
+	start = 1000
+	first := decreseKey(common.CopyBytes(entries[start].k))
+	proof = memorydb.New()
+	if err := trie.Prove(first, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the first node %v", err)
+	}
+	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the last node %v", err)
 	}
-	err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
+	err, _ = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
 	if err != nil {
 		t.Fatalf("Expected no error, got %v", err)
 	}
 
-	// One element with non-existent edge proof
+	// One element with right non-existent edge proof
 	start = 1000
-	first := decreseKey(common.CopyBytes(entries[start].k))
-	firstProof, lastProof = memorydb.New(), memorydb.New()
-	if err := trie.Prove(first, 0, firstProof); err != nil {
+	last := increseKey(common.CopyBytes(entries[start].k))
+	proof = memorydb.New()
+	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the first node %v", err)
 	}
-	if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
+	if err := trie.Prove(last, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the last node %v", err)
 	}
-	err, _ = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
+	err, _ = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
+	if err != nil {
+		t.Fatalf("Expected no error, got %v", err)
+	}
+
+	// One element with two non-existent edge proofs
+	start = 1000
+	first, last = decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[start].k))
+	proof = memorydb.New()
+	if err := trie.Prove(first, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the first node %v", err)
+	}
+	if err := trie.Prove(last, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the last node %v", err)
+	}
+	err, _ = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
 	if err != nil {
 		t.Fatalf("Expected no error, got %v", err)
 	}
@@ -343,20 +401,35 @@ func TestAllElementsProof(t *testing.T) {
 		k = append(k, entries[i].k)
 		v = append(v, entries[i].v)
 	}
-	err, _ := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil)
+	err, _ := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
 	if err != nil {
 		t.Fatalf("Expected no error, got %v", err)
 	}
 
-	// Even with edge proofs, it should still work.
-	firstProof, lastProof := memorydb.New(), memorydb.New()
-	if err := trie.Prove(entries[0].k, 0, firstProof); err != nil {
+	// With edge proofs, it should still work.
+	proof := memorydb.New()
+	if err := trie.Prove(entries[0].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the first node %v", err)
 	}
-	if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil {
+	if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the last node %v", err)
 	}
-	err, _ = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof)
+	err, _ = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
+	if err != nil {
+		t.Fatalf("Expected no error, got %v", err)
+	}
+
+	// Even with non-existent edge proofs, it should still work.
+	proof = memorydb.New()
+	first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
+	last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
+	if err := trie.Prove(first, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the first node %v", err)
+	}
+	if err := trie.Prove(last, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the last node %v", err)
+	}
+	err, _ = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
 	if err != nil {
 		t.Fatalf("Expected no error, got %v", err)
 	}
@@ -376,11 +449,11 @@ func TestSingleSideRangeProof(t *testing.T) {
 
 		var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
 		for _, pos := range cases {
-			firstProof, lastProof := memorydb.New(), memorydb.New()
-			if err := trie.Prove(common.Hash{}.Bytes(), 0, firstProof); err != nil {
+			proof := memorydb.New()
+			if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil {
 				t.Fatalf("Failed to prove the first node %v", err)
 			}
-			if err := trie.Prove(entries[pos].k, 0, lastProof); err != nil {
+			if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
 				t.Fatalf("Failed to prove the first node %v", err)
 			}
 			k := make([][]byte, 0)
@@ -389,7 +462,43 @@ func TestSingleSideRangeProof(t *testing.T) {
 				k = append(k, entries[i].k)
 				v = append(v, entries[i].v)
 			}
-			err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof)
+			err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
+			if err != nil {
+				t.Fatalf("Expected no error, got %v", err)
+			}
+		}
+	}
+}
+
+// TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff.
+func TestReverseSingleSideRangeProof(t *testing.T) {
+	for i := 0; i < 64; i++ {
+		trie := new(Trie)
+		var entries entrySlice
+		for i := 0; i < 4096; i++ {
+			value := &kv{randBytes(32), randBytes(20), false}
+			trie.Update(value.k, value.v)
+			entries = append(entries, value)
+		}
+		sort.Sort(entries)
+
+		var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
+		for _, pos := range cases {
+			proof := memorydb.New()
+			if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
+				t.Fatalf("Failed to prove the first node %v", err)
+			}
+			last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
+			if err := trie.Prove(last.Bytes(), 0, proof); err != nil {
+				t.Fatalf("Failed to prove the last node %v", err)
+			}
+			k := make([][]byte, 0)
+			v := make([][]byte, 0)
+			for i := pos; i < len(entries); i++ {
+				k = append(k, entries[i].k)
+				v = append(v, entries[i].v)
+			}
+			err, _ := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
 			if err != nil {
 				t.Fatalf("Expected no error, got %v", err)
 			}
@@ -409,15 +518,12 @@ func TestBadRangeProof(t *testing.T) {
 
 	for i := 0; i < 500; i++ {
 		start := mrand.Intn(len(entries))
-		end := mrand.Intn(len(entries)-start) + start
-		if start == end {
-			continue
-		}
-		firstProof, lastProof := memorydb.New(), memorydb.New()
-		if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
+		end := mrand.Intn(len(entries)-start) + start + 1
+		proof := memorydb.New()
+		if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 			t.Fatalf("Failed to prove the first node %v", err)
 		}
-		if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
+		if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 			t.Fatalf("Failed to prove the last node %v", err)
 		}
 		var keys [][]byte
@@ -426,6 +532,7 @@ func TestBadRangeProof(t *testing.T) {
 			keys = append(keys, entries[i].k)
 			vals = append(vals, entries[i].v)
 		}
+		var first, last = keys[0], keys[len(keys)-1]
 		testcase := mrand.Intn(6)
 		var index int
 		switch testcase {
@@ -439,17 +546,6 @@ func TestBadRangeProof(t *testing.T) {
 			vals[index] = randBytes(20) // In theory it can't be same
 		case 2:
 			// Gapped entry slice
-
-			// There are only two elements, skip it. Dropped any element
-			// will lead to single edge proof which is always correct.
-			if end-start <= 2 {
-				continue
-			}
-			// If the dropped element is the first or last one and it's a
-			// batch of small size elements. In this special case, it can
-			// happen that the proof for the edge element is exactly same
-			// with the first/last second element(since small values are
-			// embedded in the parent). Avoid this case.
 			index = mrand.Intn(end - start)
 			if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
 				continue
@@ -457,20 +553,24 @@ func TestBadRangeProof(t *testing.T) {
 			keys = append(keys[:index], keys[index+1:]...)
 			vals = append(vals[:index], vals[index+1:]...)
 		case 3:
-			// Switched entry slice, same effect with gapped
-			index = mrand.Intn(end - start)
-			keys[index] = entries[len(entries)-1].k
-			vals[index] = entries[len(entries)-1].v
+			// Out of order
+			index1 := mrand.Intn(end - start)
+			index2 := mrand.Intn(end - start)
+			if index1 == index2 {
+				continue
+			}
+			keys[index1], keys[index2] = keys[index2], keys[index1]
+			vals[index1], vals[index2] = vals[index2], vals[index1]
 		case 4:
-			// Set random key to nil
+			// Set random key to nil, do nothing
 			index = mrand.Intn(end - start)
 			keys[index] = nil
 		case 5:
-			// Set random value to nil
+			// Set random value to nil, deletion
 			index = mrand.Intn(end - start)
 			vals[index] = nil
 		}
-		err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
+		err, _ := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
 		if err == nil {
 			t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
 		}
@@ -488,11 +588,11 @@ func TestGappedRangeProof(t *testing.T) {
 		entries = append(entries, value)
 	}
 	first, last := 2, 8
-	firstProof, lastProof := memorydb.New(), memorydb.New()
-	if err := trie.Prove(entries[first].k, 0, firstProof); err != nil {
+	proof := memorydb.New()
+	if err := trie.Prove(entries[first].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the first node %v", err)
 	}
-	if err := trie.Prove(entries[last-1].k, 0, lastProof); err != nil {
+	if err := trie.Prove(entries[last-1].k, 0, proof); err != nil {
 		t.Fatalf("Failed to prove the last node %v", err)
 	}
 	var keys [][]byte
@@ -504,12 +604,55 @@ func TestGappedRangeProof(t *testing.T) {
 		keys = append(keys, entries[i].k)
 		vals = append(vals, entries[i].v)
 	}
-	err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
+	err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
 	if err == nil {
 		t.Fatal("expect error, got nil")
 	}
 }
 
+// TestSameSideProofs tests the element is not in the range covered by proofs
+func TestSameSideProofs(t *testing.T) {
+	trie, vals := randomTrie(4096)
+	var entries entrySlice
+	for _, kv := range vals {
+		entries = append(entries, kv)
+	}
+	sort.Sort(entries)
+
+	pos := 1000
+	first := decreseKey(common.CopyBytes(entries[pos].k))
+	first = decreseKey(first)
+	last := decreseKey(common.CopyBytes(entries[pos].k))
+
+	proof := memorydb.New()
+	if err := trie.Prove(first, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the first node %v", err)
+	}
+	if err := trie.Prove(last, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the last node %v", err)
+	}
+	err, _ := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
+	if err == nil {
+		t.Fatalf("Expected error, got nil")
+	}
+
+	first = increseKey(common.CopyBytes(entries[pos].k))
+	last = increseKey(common.CopyBytes(entries[pos].k))
+	last = increseKey(last)
+
+	proof = memorydb.New()
+	if err := trie.Prove(first, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the first node %v", err)
+	}
+	if err := trie.Prove(last, 0, proof); err != nil {
+		t.Fatalf("Failed to prove the last node %v", err)
+	}
+	err, _ = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
+	if err == nil {
+		t.Fatalf("Expected error, got nil")
+	}
+}
+
 func TestHasRightElement(t *testing.T) {
 	trie := new(Trie)
 	var entries entrySlice
@@ -530,38 +673,49 @@ func TestHasRightElement(t *testing.T) {
 		{0, 10, true},
 		{50, 100, true},
 		{50, len(entries), false},               // No more element expected
-		{len(entries) - 1, len(entries), false}, // Single last element
+		{len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key)
+		{len(entries) - 1, -1, false},           // Single last element with non-existent right proof
 		{0, len(entries), false},                // The whole set with existent left proof
 		{-1, len(entries), false},               // The whole set with non-existent left proof
+		{-1, -1, false},                         // The whole set with non-existent left/right proof
 	}
 	for _, c := range cases {
 		var (
-			firstKey   []byte
-			start      = c.start
-			firstProof = memorydb.New()
-			lastProof  = memorydb.New()
+			firstKey []byte
+			lastKey  []byte
+			start    = c.start
+			end      = c.end
+			proof    = memorydb.New()
 		)
 		if c.start == -1 {
 			firstKey, start = common.Hash{}.Bytes(), 0
-			if err := trie.Prove(firstKey, 0, firstProof); err != nil {
+			if err := trie.Prove(firstKey, 0, proof); err != nil {
 				t.Fatalf("Failed to prove the first node %v", err)
 			}
 		} else {
 			firstKey = entries[c.start].k
-			if err := trie.Prove(entries[c.start].k, 0, firstProof); err != nil {
+			if err := trie.Prove(entries[c.start].k, 0, proof); err != nil {
 				t.Fatalf("Failed to prove the first node %v", err)
 			}
 		}
-		if err := trie.Prove(entries[c.end-1].k, 0, lastProof); err != nil {
-			t.Fatalf("Failed to prove the first node %v", err)
+		if c.end == -1 {
+			lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries)
+			if err := trie.Prove(lastKey, 0, proof); err != nil {
+				t.Fatalf("Failed to prove the first node %v", err)
+			}
+		} else {
+			lastKey = entries[c.end-1].k
+			if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil {
+				t.Fatalf("Failed to prove the first node %v", err)
+			}
 		}
 		k := make([][]byte, 0)
 		v := make([][]byte, 0)
-		for i := start; i < c.end; i++ {
+		for i := start; i < end; i++ {
 			k = append(k, entries[i].k)
 			v = append(v, entries[i].v)
 		}
-		err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, k, v, firstProof, lastProof)
+		err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
 		if err != nil {
 			t.Fatalf("Expected no error, got %v", err)
 		}
@@ -589,12 +743,12 @@ func TestEmptyRangeProof(t *testing.T) {
 		{500, true},
 	}
 	for _, c := range cases {
-		firstProof := memorydb.New()
+		proof := memorydb.New()
 		first := increseKey(common.CopyBytes(entries[c.pos].k))
-		if err := trie.Prove(first, 0, firstProof); err != nil {
+		if err := trie.Prove(first, 0, proof); err != nil {
 			t.Fatalf("Failed to prove the first node %v", err)
 		}
-		err, _ := VerifyRangeProof(trie.Hash(), first, nil, nil, firstProof, nil)
+		err, _ := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
 		if c.err && err == nil {
 			t.Fatalf("Expected error, got nil")
 		}
@@ -688,11 +842,11 @@ func benchmarkVerifyRangeProof(b *testing.B, size int) {
 
 	start := 2
 	end := start + size
-	firstProof, lastProof := memorydb.New(), memorydb.New()
-	if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
+	proof := memorydb.New()
+	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 		b.Fatalf("Failed to prove the first node %v", err)
 	}
-	if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
+	if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 		b.Fatalf("Failed to prove the last node %v", err)
 	}
 	var keys [][]byte
@@ -704,7 +858,7 @@ func benchmarkVerifyRangeProof(b *testing.B, size int) {
 
 	b.ResetTimer()
 	for i := 0; i < b.N; i++ {
-		err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof)
+		err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
 		if err != nil {
 			b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
 		}