|
|
@@ -0,0 +1,481 @@
|
|
|
+// Package bn256 implements a particular bilinear group at the 128-bit security
|
|
|
+// level.
|
|
|
+//
|
|
|
+// Bilinear groups are the basis of many of the new cryptographic protocols that
|
|
|
+// have been proposed over the past decade. They consist of a triplet of groups
|
|
|
+// (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
|
|
|
+// is a generator of the respective group). That function is called a pairing
|
|
|
+// function.
|
|
|
+//
|
|
|
+// This package specifically implements the Optimal Ate pairing over a 256-bit
|
|
|
+// Barreto-Naehrig curve as described in
|
|
|
+// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
|
|
|
+// with the implementation described in that paper.
|
|
|
+package bn256
|
|
|
+
|
|
|
+import (
|
|
|
+ "crypto/rand"
|
|
|
+ "errors"
|
|
|
+ "io"
|
|
|
+ "math/big"
|
|
|
+)
|
|
|
+
|
|
|
+func randomK(r io.Reader) (k *big.Int, err error) {
|
|
|
+ for {
|
|
|
+ k, err = rand.Int(r, Order)
|
|
|
+ if k.Sign() > 0 || err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// G1 is an abstract cyclic group. The zero value is suitable for use as the
|
|
|
+// output of an operation, but cannot be used as an input.
|
|
|
+type G1 struct {
|
|
|
+ p *curvePoint
|
|
|
+}
|
|
|
+
|
|
|
+// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
|
|
|
+func RandomG1(r io.Reader) (*big.Int, *G1, error) {
|
|
|
+ k, err := randomK(r)
|
|
|
+ if err != nil {
|
|
|
+ return nil, nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ return k, new(G1).ScalarBaseMult(k), nil
|
|
|
+}
|
|
|
+
|
|
|
+func (g *G1) String() string {
|
|
|
+ return "bn256.G1" + g.p.String()
|
|
|
+}
|
|
|
+
|
|
|
+// ScalarBaseMult sets e to g*k where g is the generator of the group and then
|
|
|
+// returns e.
|
|
|
+func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &curvePoint{}
|
|
|
+ }
|
|
|
+ e.p.Mul(curveGen, k)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// ScalarMult sets e to a*k and then returns e.
|
|
|
+func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &curvePoint{}
|
|
|
+ }
|
|
|
+ e.p.Mul(a.p, k)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Add sets e to a+b and then returns e.
|
|
|
+func (e *G1) Add(a, b *G1) *G1 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &curvePoint{}
|
|
|
+ }
|
|
|
+ e.p.Add(a.p, b.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Neg sets e to -a and then returns e.
|
|
|
+func (e *G1) Neg(a *G1) *G1 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &curvePoint{}
|
|
|
+ }
|
|
|
+ e.p.Neg(a.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Set sets e to a and then returns e.
|
|
|
+func (e *G1) Set(a *G1) *G1 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &curvePoint{}
|
|
|
+ }
|
|
|
+ e.p.Set(a.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Marshal converts e to a byte slice.
|
|
|
+func (e *G1) Marshal() []byte {
|
|
|
+ // Each value is a 256-bit number.
|
|
|
+ const numBytes = 256 / 8
|
|
|
+
|
|
|
+ e.p.MakeAffine()
|
|
|
+ ret := make([]byte, numBytes*2)
|
|
|
+ if e.p.IsInfinity() {
|
|
|
+ return ret
|
|
|
+ }
|
|
|
+ temp := &gfP{}
|
|
|
+
|
|
|
+ montDecode(temp, &e.p.x)
|
|
|
+ temp.Marshal(ret)
|
|
|
+ montDecode(temp, &e.p.y)
|
|
|
+ temp.Marshal(ret[numBytes:])
|
|
|
+
|
|
|
+ return ret
|
|
|
+}
|
|
|
+
|
|
|
+// Unmarshal sets e to the result of converting the output of Marshal back into
|
|
|
+// a group element and then returns e.
|
|
|
+func (e *G1) Unmarshal(m []byte) ([]byte, error) {
|
|
|
+ // Each value is a 256-bit number.
|
|
|
+ const numBytes = 256 / 8
|
|
|
+ if len(m) < 2*numBytes {
|
|
|
+ return nil, errors.New("bn256: not enough data")
|
|
|
+ }
|
|
|
+ // Unmarshal the points and check their caps
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &curvePoint{}
|
|
|
+ } else {
|
|
|
+ e.p.x, e.p.y = gfP{0}, gfP{0}
|
|
|
+ }
|
|
|
+ var err error
|
|
|
+ if err = e.p.x.Unmarshal(m); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ // Encode into Montgomery form and ensure it's on the curve
|
|
|
+ montEncode(&e.p.x, &e.p.x)
|
|
|
+ montEncode(&e.p.y, &e.p.y)
|
|
|
+
|
|
|
+ zero := gfP{0}
|
|
|
+ if e.p.x == zero && e.p.y == zero {
|
|
|
+ // This is the point at infinity.
|
|
|
+ e.p.y = *newGFp(1)
|
|
|
+ e.p.z = gfP{0}
|
|
|
+ e.p.t = gfP{0}
|
|
|
+ } else {
|
|
|
+ e.p.z = *newGFp(1)
|
|
|
+ e.p.t = *newGFp(1)
|
|
|
+
|
|
|
+ if !e.p.IsOnCurve() {
|
|
|
+ return nil, errors.New("bn256: malformed point")
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return m[2*numBytes:], nil
|
|
|
+}
|
|
|
+
|
|
|
+// G2 is an abstract cyclic group. The zero value is suitable for use as the
|
|
|
+// output of an operation, but cannot be used as an input.
|
|
|
+type G2 struct {
|
|
|
+ p *twistPoint
|
|
|
+}
|
|
|
+
|
|
|
+// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
|
|
|
+func RandomG2(r io.Reader) (*big.Int, *G2, error) {
|
|
|
+ k, err := randomK(r)
|
|
|
+ if err != nil {
|
|
|
+ return nil, nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ return k, new(G2).ScalarBaseMult(k), nil
|
|
|
+}
|
|
|
+
|
|
|
+func (e *G2) String() string {
|
|
|
+ return "bn256.G2" + e.p.String()
|
|
|
+}
|
|
|
+
|
|
|
+// ScalarBaseMult sets e to g*k where g is the generator of the group and then
|
|
|
+// returns out.
|
|
|
+func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &twistPoint{}
|
|
|
+ }
|
|
|
+ e.p.Mul(twistGen, k)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// ScalarMult sets e to a*k and then returns e.
|
|
|
+func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &twistPoint{}
|
|
|
+ }
|
|
|
+ e.p.Mul(a.p, k)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Add sets e to a+b and then returns e.
|
|
|
+func (e *G2) Add(a, b *G2) *G2 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &twistPoint{}
|
|
|
+ }
|
|
|
+ e.p.Add(a.p, b.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Neg sets e to -a and then returns e.
|
|
|
+func (e *G2) Neg(a *G2) *G2 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &twistPoint{}
|
|
|
+ }
|
|
|
+ e.p.Neg(a.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Set sets e to a and then returns e.
|
|
|
+func (e *G2) Set(a *G2) *G2 {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &twistPoint{}
|
|
|
+ }
|
|
|
+ e.p.Set(a.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Marshal converts e into a byte slice.
|
|
|
+func (e *G2) Marshal() []byte {
|
|
|
+ // Each value is a 256-bit number.
|
|
|
+ const numBytes = 256 / 8
|
|
|
+
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &twistPoint{}
|
|
|
+ }
|
|
|
+
|
|
|
+ e.p.MakeAffine()
|
|
|
+ ret := make([]byte, numBytes*4)
|
|
|
+ if e.p.IsInfinity() {
|
|
|
+ return ret
|
|
|
+ }
|
|
|
+ temp := &gfP{}
|
|
|
+
|
|
|
+ montDecode(temp, &e.p.x.x)
|
|
|
+ temp.Marshal(ret)
|
|
|
+ montDecode(temp, &e.p.x.y)
|
|
|
+ temp.Marshal(ret[numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.x)
|
|
|
+ temp.Marshal(ret[2*numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.y)
|
|
|
+ temp.Marshal(ret[3*numBytes:])
|
|
|
+
|
|
|
+ return ret
|
|
|
+}
|
|
|
+
|
|
|
+// Unmarshal sets e to the result of converting the output of Marshal back into
|
|
|
+// a group element and then returns e.
|
|
|
+func (e *G2) Unmarshal(m []byte) ([]byte, error) {
|
|
|
+ // Each value is a 256-bit number.
|
|
|
+ const numBytes = 256 / 8
|
|
|
+ if len(m) < 4*numBytes {
|
|
|
+ return nil, errors.New("bn256: not enough data")
|
|
|
+ }
|
|
|
+ // Unmarshal the points and check their caps
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &twistPoint{}
|
|
|
+ }
|
|
|
+ var err error
|
|
|
+ if err = e.p.x.x.Unmarshal(m); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ // Encode into Montgomery form and ensure it's on the curve
|
|
|
+ montEncode(&e.p.x.x, &e.p.x.x)
|
|
|
+ montEncode(&e.p.x.y, &e.p.x.y)
|
|
|
+ montEncode(&e.p.y.x, &e.p.y.x)
|
|
|
+ montEncode(&e.p.y.y, &e.p.y.y)
|
|
|
+
|
|
|
+ if e.p.x.IsZero() && e.p.y.IsZero() {
|
|
|
+ // This is the point at infinity.
|
|
|
+ e.p.y.SetOne()
|
|
|
+ e.p.z.SetZero()
|
|
|
+ e.p.t.SetZero()
|
|
|
+ } else {
|
|
|
+ e.p.z.SetOne()
|
|
|
+ e.p.t.SetOne()
|
|
|
+
|
|
|
+ if !e.p.IsOnCurve() {
|
|
|
+ return nil, errors.New("bn256: malformed point")
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return m[4*numBytes:], nil
|
|
|
+}
|
|
|
+
|
|
|
+// GT is an abstract cyclic group. The zero value is suitable for use as the
|
|
|
+// output of an operation, but cannot be used as an input.
|
|
|
+type GT struct {
|
|
|
+ p *gfP12
|
|
|
+}
|
|
|
+
|
|
|
+// Pair calculates an Optimal Ate pairing.
|
|
|
+func Pair(g1 *G1, g2 *G2) *GT {
|
|
|
+ return >{optimalAte(g2.p, g1.p)}
|
|
|
+}
|
|
|
+
|
|
|
+// PairingCheck calculates the Optimal Ate pairing for a set of points.
|
|
|
+func PairingCheck(a []*G1, b []*G2) bool {
|
|
|
+ acc := new(gfP12)
|
|
|
+ acc.SetOne()
|
|
|
+
|
|
|
+ for i := 0; i < len(a); i++ {
|
|
|
+ if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ acc.Mul(acc, miller(b[i].p, a[i].p))
|
|
|
+ }
|
|
|
+ return finalExponentiation(acc).IsOne()
|
|
|
+}
|
|
|
+
|
|
|
+// Miller applies Miller's algorithm, which is a bilinear function from the
|
|
|
+// source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
|
|
|
+// g2).
|
|
|
+func Miller(g1 *G1, g2 *G2) *GT {
|
|
|
+ return >{miller(g2.p, g1.p)}
|
|
|
+}
|
|
|
+
|
|
|
+func (g *GT) String() string {
|
|
|
+ return "bn256.GT" + g.p.String()
|
|
|
+}
|
|
|
+
|
|
|
+// ScalarMult sets e to a*k and then returns e.
|
|
|
+func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &gfP12{}
|
|
|
+ }
|
|
|
+ e.p.Exp(a.p, k)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Add sets e to a+b and then returns e.
|
|
|
+func (e *GT) Add(a, b *GT) *GT {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &gfP12{}
|
|
|
+ }
|
|
|
+ e.p.Mul(a.p, b.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Neg sets e to -a and then returns e.
|
|
|
+func (e *GT) Neg(a *GT) *GT {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &gfP12{}
|
|
|
+ }
|
|
|
+ e.p.Conjugate(a.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Set sets e to a and then returns e.
|
|
|
+func (e *GT) Set(a *GT) *GT {
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &gfP12{}
|
|
|
+ }
|
|
|
+ e.p.Set(a.p)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Finalize is a linear function from F_p^12 to GT.
|
|
|
+func (e *GT) Finalize() *GT {
|
|
|
+ ret := finalExponentiation(e.p)
|
|
|
+ e.p.Set(ret)
|
|
|
+ return e
|
|
|
+}
|
|
|
+
|
|
|
+// Marshal converts e into a byte slice.
|
|
|
+func (e *GT) Marshal() []byte {
|
|
|
+ // Each value is a 256-bit number.
|
|
|
+ const numBytes = 256 / 8
|
|
|
+
|
|
|
+ ret := make([]byte, numBytes*12)
|
|
|
+ temp := &gfP{}
|
|
|
+
|
|
|
+ montDecode(temp, &e.p.x.x.x)
|
|
|
+ temp.Marshal(ret)
|
|
|
+ montDecode(temp, &e.p.x.x.y)
|
|
|
+ temp.Marshal(ret[numBytes:])
|
|
|
+ montDecode(temp, &e.p.x.y.x)
|
|
|
+ temp.Marshal(ret[2*numBytes:])
|
|
|
+ montDecode(temp, &e.p.x.y.y)
|
|
|
+ temp.Marshal(ret[3*numBytes:])
|
|
|
+ montDecode(temp, &e.p.x.z.x)
|
|
|
+ temp.Marshal(ret[4*numBytes:])
|
|
|
+ montDecode(temp, &e.p.x.z.y)
|
|
|
+ temp.Marshal(ret[5*numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.x.x)
|
|
|
+ temp.Marshal(ret[6*numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.x.y)
|
|
|
+ temp.Marshal(ret[7*numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.y.x)
|
|
|
+ temp.Marshal(ret[8*numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.y.y)
|
|
|
+ temp.Marshal(ret[9*numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.z.x)
|
|
|
+ temp.Marshal(ret[10*numBytes:])
|
|
|
+ montDecode(temp, &e.p.y.z.y)
|
|
|
+ temp.Marshal(ret[11*numBytes:])
|
|
|
+
|
|
|
+ return ret
|
|
|
+}
|
|
|
+
|
|
|
+// Unmarshal sets e to the result of converting the output of Marshal back into
|
|
|
+// a group element and then returns e.
|
|
|
+func (e *GT) Unmarshal(m []byte) ([]byte, error) {
|
|
|
+ // Each value is a 256-bit number.
|
|
|
+ const numBytes = 256 / 8
|
|
|
+
|
|
|
+ if len(m) < 12*numBytes {
|
|
|
+ return nil, errors.New("bn256: not enough data")
|
|
|
+ }
|
|
|
+
|
|
|
+ if e.p == nil {
|
|
|
+ e.p = &gfP12{}
|
|
|
+ }
|
|
|
+
|
|
|
+ var err error
|
|
|
+ if err = e.p.x.x.x.Unmarshal(m); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ montEncode(&e.p.x.x.x, &e.p.x.x.x)
|
|
|
+ montEncode(&e.p.x.x.y, &e.p.x.x.y)
|
|
|
+ montEncode(&e.p.x.y.x, &e.p.x.y.x)
|
|
|
+ montEncode(&e.p.x.y.y, &e.p.x.y.y)
|
|
|
+ montEncode(&e.p.x.z.x, &e.p.x.z.x)
|
|
|
+ montEncode(&e.p.x.z.y, &e.p.x.z.y)
|
|
|
+ montEncode(&e.p.y.x.x, &e.p.y.x.x)
|
|
|
+ montEncode(&e.p.y.x.y, &e.p.y.x.y)
|
|
|
+ montEncode(&e.p.y.y.x, &e.p.y.y.x)
|
|
|
+ montEncode(&e.p.y.y.y, &e.p.y.y.y)
|
|
|
+ montEncode(&e.p.y.z.x, &e.p.y.z.x)
|
|
|
+ montEncode(&e.p.y.z.y, &e.p.y.z.y)
|
|
|
+
|
|
|
+ return m[12*numBytes:], nil
|
|
|
+}
|