|
|
@@ -2,15 +2,18 @@ package p2p
|
|
|
|
|
|
import (
|
|
|
"crypto/ecdsa"
|
|
|
+ "crypto/elliptic"
|
|
|
"crypto/rand"
|
|
|
"errors"
|
|
|
"fmt"
|
|
|
+ "hash"
|
|
|
"io"
|
|
|
"net"
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
|
"github.com/ethereum/go-ethereum/crypto/ecies"
|
|
|
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
|
|
+ "github.com/ethereum/go-ethereum/crypto/sha3"
|
|
|
"github.com/ethereum/go-ethereum/p2p/discover"
|
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
|
)
|
|
|
@@ -24,27 +27,33 @@ const (
|
|
|
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
|
|
|
authRespLen = pubLen + shaLen + 1
|
|
|
|
|
|
- eciesBytes = 65 + 16 + 32
|
|
|
- iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
|
|
|
- rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
|
|
|
+ eciesBytes = 65 + 16 + 32
|
|
|
+ encAuthMsgLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
|
|
|
+ encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
|
|
|
)
|
|
|
|
|
|
+// conn represents a remote connection after encryption handshake
|
|
|
+// and protocol handshake have completed.
|
|
|
+//
|
|
|
+// The MsgReadWriter is usually layered as follows:
|
|
|
+//
|
|
|
+// netWrapper (I/O timeouts, thread-safe ReadMsg, WriteMsg)
|
|
|
+// rlpxFrameRW (message encoding, encryption, authentication)
|
|
|
+// bufio.ReadWriter (buffering)
|
|
|
+// net.Conn (network I/O)
|
|
|
+//
|
|
|
type conn struct {
|
|
|
- *frameRW
|
|
|
+ MsgReadWriter
|
|
|
*protoHandshake
|
|
|
}
|
|
|
|
|
|
-func newConn(fd net.Conn, hs *protoHandshake) *conn {
|
|
|
- return &conn{newFrameRW(fd, msgWriteTimeout), hs}
|
|
|
-}
|
|
|
-
|
|
|
-// encHandshake represents information about the remote end
|
|
|
-// of a connection that is negotiated during the encryption handshake.
|
|
|
-type encHandshake struct {
|
|
|
- ID discover.NodeID
|
|
|
- IngressMAC []byte
|
|
|
- EgressMAC []byte
|
|
|
- Token []byte
|
|
|
+// secrets represents the connection secrets
|
|
|
+// which are negotiated during the encryption handshake.
|
|
|
+type secrets struct {
|
|
|
+ RemoteID discover.NodeID
|
|
|
+ AES, MAC []byte
|
|
|
+ EgressMAC, IngressMAC hash.Hash
|
|
|
+ Token []byte
|
|
|
}
|
|
|
|
|
|
// protoHandshake is the RLP structure of the protocol handshake.
|
|
|
@@ -68,15 +77,21 @@ func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *di
|
|
|
}
|
|
|
|
|
|
func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (*conn, error) {
|
|
|
- // var remotePubkey []byte
|
|
|
- // sessionToken, remotePubkey, err = inboundEncHandshake(fd, prv, nil)
|
|
|
- // copy(remoteID[:], remotePubkey)
|
|
|
+ secrets, err := receiverEncHandshake(fd, prv, nil)
|
|
|
+ if err != nil {
|
|
|
+ return nil, fmt.Errorf("encryption handshake failed: %v", err)
|
|
|
+ }
|
|
|
|
|
|
- rw := newFrameRW(fd, msgWriteTimeout)
|
|
|
+ // Run the protocol handshake using authenticated messages.
|
|
|
+ rw := newRlpxFrameRW(fd, secrets)
|
|
|
rhs, err := readProtocolHandshake(rw, our)
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
+ if rhs.ID != secrets.RemoteID {
|
|
|
+ return nil, errors.New("node ID in protocol handshake does not match encryption handshake")
|
|
|
+ }
|
|
|
+ // TODO: validate that handshake node ID matches
|
|
|
if err := writeProtocolHandshake(rw, our); err != nil {
|
|
|
return nil, fmt.Errorf("protocol write error: %v", err)
|
|
|
}
|
|
|
@@ -84,10 +99,13 @@ func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (
|
|
|
}
|
|
|
|
|
|
func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
|
|
|
- // remoteID = dial.ID
|
|
|
- // sessionToken, err = outboundEncHandshake(fd, prv, remoteID[:], nil)
|
|
|
+ secrets, err := initiatorEncHandshake(fd, prv, dial.ID, nil)
|
|
|
+ if err != nil {
|
|
|
+ return nil, fmt.Errorf("encryption handshake failed: %v", err)
|
|
|
+ }
|
|
|
|
|
|
- rw := newFrameRW(fd, msgWriteTimeout)
|
|
|
+ // Run the protocol handshake using authenticated messages.
|
|
|
+ rw := newRlpxFrameRW(fd, secrets)
|
|
|
if err := writeProtocolHandshake(rw, our); err != nil {
|
|
|
return nil, fmt.Errorf("protocol write error: %v", err)
|
|
|
}
|
|
|
@@ -101,273 +119,256 @@ func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake,
|
|
|
return &conn{rw, rhs}, nil
|
|
|
}
|
|
|
|
|
|
-// outboundEncHandshake negotiates a session token on conn.
|
|
|
+// encHandshake contains the state of the encryption handshake.
|
|
|
+type encHandshake struct {
|
|
|
+ initiator bool
|
|
|
+ remoteID discover.NodeID
|
|
|
+
|
|
|
+ remotePub *ecies.PublicKey // remote-pubk
|
|
|
+ initNonce, respNonce []byte // nonce
|
|
|
+ randomPrivKey *ecies.PrivateKey // ecdhe-random
|
|
|
+ remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
|
|
|
+}
|
|
|
+
|
|
|
+// secrets is called after the handshake is completed.
|
|
|
+// It extracts the connection secrets from the handshake values.
|
|
|
+func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
|
|
|
+ ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
|
|
|
+ if err != nil {
|
|
|
+ return secrets{}, err
|
|
|
+ }
|
|
|
+
|
|
|
+ // derive base secrets from ephemeral key agreement
|
|
|
+ sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
|
|
|
+ aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
|
|
|
+ s := secrets{
|
|
|
+ RemoteID: h.remoteID,
|
|
|
+ AES: aesSecret,
|
|
|
+ MAC: crypto.Sha3(ecdheSecret, aesSecret),
|
|
|
+ Token: crypto.Sha3(sharedSecret),
|
|
|
+ }
|
|
|
+
|
|
|
+ // setup sha3 instances for the MACs
|
|
|
+ mac1 := sha3.NewKeccak256()
|
|
|
+ mac1.Write(xor(s.MAC, h.respNonce))
|
|
|
+ mac1.Write(auth)
|
|
|
+ mac2 := sha3.NewKeccak256()
|
|
|
+ mac2.Write(xor(s.MAC, h.initNonce))
|
|
|
+ mac2.Write(authResp)
|
|
|
+ if h.initiator {
|
|
|
+ s.EgressMAC, s.IngressMAC = mac1, mac2
|
|
|
+ } else {
|
|
|
+ s.EgressMAC, s.IngressMAC = mac2, mac1
|
|
|
+ }
|
|
|
+
|
|
|
+ return s, nil
|
|
|
+}
|
|
|
+
|
|
|
+func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
|
|
|
+ return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
|
|
|
+}
|
|
|
+
|
|
|
+// initiatorEncHandshake negotiates a session token on conn.
|
|
|
// it should be called on the dialing side of the connection.
|
|
|
//
|
|
|
-// privateKey is the local client's private key
|
|
|
-// remotePublicKey is the remote peer's node ID
|
|
|
-// sessionToken is the token from a previous session with this node.
|
|
|
-func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (
|
|
|
- newSessionToken []byte,
|
|
|
- err error,
|
|
|
-) {
|
|
|
- auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
|
|
|
+// prv is the local client's private key.
|
|
|
+// token is the token from a previous session with this node.
|
|
|
+func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
|
|
|
+ h, err := newInitiatorHandshake(remoteID)
|
|
|
if err != nil {
|
|
|
- return nil, err
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ auth, err := h.authMsg(prv, token)
|
|
|
+ if err != nil {
|
|
|
+ return s, err
|
|
|
}
|
|
|
if _, err = conn.Write(auth); err != nil {
|
|
|
- return nil, err
|
|
|
+ return s, err
|
|
|
}
|
|
|
|
|
|
- response := make([]byte, rHSLen)
|
|
|
+ response := make([]byte, encAuthRespLen)
|
|
|
if _, err = io.ReadFull(conn, response); err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ if err := h.decodeAuthResp(response, prv); err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ return h.secrets(auth, response)
|
|
|
+}
|
|
|
+
|
|
|
+func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
|
|
|
+ // generate random initiator nonce
|
|
|
+ n := make([]byte, shaLen)
|
|
|
+ if _, err := rand.Read(n); err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
- recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
|
|
|
+ // generate random keypair to use for signing
|
|
|
+ randpriv, err := ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
-
|
|
|
- return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
|
|
|
-}
|
|
|
-
|
|
|
-// authMsg creates the initiator handshake.
|
|
|
-func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
|
|
|
- auth, initNonce []byte,
|
|
|
- randomPrvKey *ecdsa.PrivateKey,
|
|
|
- err error,
|
|
|
-) {
|
|
|
- // session init, common to both parties
|
|
|
- remotePubKey, err := importPublicKey(remotePubKeyS)
|
|
|
+ rpub, err := remoteID.Pubkey()
|
|
|
if err != nil {
|
|
|
- return
|
|
|
+ return nil, fmt.Errorf("bad remoteID: %v", err)
|
|
|
+ }
|
|
|
+ h := &encHandshake{
|
|
|
+ initiator: true,
|
|
|
+ remoteID: remoteID,
|
|
|
+ remotePub: ecies.ImportECDSAPublic(rpub),
|
|
|
+ initNonce: n,
|
|
|
+ randomPrivKey: randpriv,
|
|
|
}
|
|
|
+ return h, nil
|
|
|
+}
|
|
|
|
|
|
- var tokenFlag byte // = 0x00
|
|
|
- if sessionToken == nil {
|
|
|
+// authMsg creates an encrypted initiator handshake message.
|
|
|
+func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
|
|
|
+ var tokenFlag byte
|
|
|
+ if token == nil {
|
|
|
// no session token found means we need to generate shared secret.
|
|
|
// ecies shared secret is used as initial session token for new peers
|
|
|
// generate shared key from prv and remote pubkey
|
|
|
- if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
|
|
|
- return
|
|
|
+ var err error
|
|
|
+ if token, err = h.ecdhShared(prv); err != nil {
|
|
|
+ return nil, err
|
|
|
}
|
|
|
- // tokenFlag = 0x00 // redundant
|
|
|
} else {
|
|
|
// for known peers, we use stored token from the previous session
|
|
|
tokenFlag = 0x01
|
|
|
}
|
|
|
|
|
|
- //E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
|
|
|
- // E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
|
|
|
- // allocate msgLen long message,
|
|
|
- var msg []byte = make([]byte, authMsgLen)
|
|
|
- initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
|
|
|
- if _, err = rand.Read(initNonce); err != nil {
|
|
|
- return
|
|
|
+ // sign known message:
|
|
|
+ // ecdh-shared-secret^nonce for new peers
|
|
|
+ // token^nonce for old peers
|
|
|
+ signed := xor(token, h.initNonce)
|
|
|
+ signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
}
|
|
|
- // create known message
|
|
|
- // ecdh-shared-secret^nonce for new peers
|
|
|
- // token^nonce for old peers
|
|
|
- var sharedSecret = xor(sessionToken, initNonce)
|
|
|
|
|
|
- // generate random keypair to use for signing
|
|
|
- if randomPrvKey, err = crypto.GenerateKey(); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- // sign shared secret (message known to both parties): shared-secret
|
|
|
- var signature []byte
|
|
|
- // signature = sign(ecdhe-random, shared-secret)
|
|
|
- // uses secp256k1.Sign
|
|
|
- if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- // message
|
|
|
- // signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0
|
|
|
- copy(msg, signature) // copy signed-shared-secret
|
|
|
- // H(ecdhe-random-pubk)
|
|
|
- var randomPubKey64 []byte
|
|
|
- if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- var pubKey64 []byte
|
|
|
- if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64))
|
|
|
- // pubkey copied to the correct segment.
|
|
|
- copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64)
|
|
|
- // nonce is already in the slice
|
|
|
- // stick tokenFlag byte to the end
|
|
|
- msg[authMsgLen-1] = tokenFlag
|
|
|
+ // encode auth message
|
|
|
+ // signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
|
|
|
+ msg := make([]byte, authMsgLen)
|
|
|
+ n := copy(msg, signature)
|
|
|
+ n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
|
|
|
+ n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
|
|
|
+ n += copy(msg[n:], h.initNonce)
|
|
|
+ msg[n] = tokenFlag
|
|
|
|
|
|
- // encrypt using remote-pubk
|
|
|
- // auth = eciesEncrypt(remote-pubk, msg)
|
|
|
- if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- return
|
|
|
+ // encrypt auth message using remote-pubk
|
|
|
+ return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
|
|
|
}
|
|
|
|
|
|
-// completeHandshake is called when the initiator receives an
|
|
|
-// authentication response (aka receiver handshake). It completes the
|
|
|
-// handshake by reading off parameters the remote peer provides needed
|
|
|
-// to set up the secure session.
|
|
|
-func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
|
|
|
- respNonce []byte,
|
|
|
- remoteRandomPubKey *ecdsa.PublicKey,
|
|
|
- tokenFlag bool,
|
|
|
- err error,
|
|
|
-) {
|
|
|
- var msg []byte
|
|
|
- // they prove that msg is meant for me,
|
|
|
- // I prove I possess private key if i can read it
|
|
|
- if msg, err = crypto.Decrypt(prvKey, auth); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- respNonce = msg[pubLen : pubLen+shaLen]
|
|
|
- var remoteRandomPubKeyS = msg[:pubLen]
|
|
|
- if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- if msg[authRespLen-1] == 0x01 {
|
|
|
- tokenFlag = true
|
|
|
- }
|
|
|
- return
|
|
|
+// decodeAuthResp decode an encrypted authentication response message.
|
|
|
+func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
|
|
|
+ msg, err := crypto.Decrypt(prv, auth)
|
|
|
+ if err != nil {
|
|
|
+ return fmt.Errorf("could not decrypt auth response (%v)", err)
|
|
|
+ }
|
|
|
+ h.respNonce = msg[pubLen : pubLen+shaLen]
|
|
|
+ h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ // ignore token flag for now
|
|
|
+ return nil
|
|
|
}
|
|
|
|
|
|
-// inboundEncHandshake negotiates a session token on conn.
|
|
|
+// receiverEncHandshake negotiates a session token on conn.
|
|
|
// it should be called on the listening side of the connection.
|
|
|
//
|
|
|
-// privateKey is the local client's private key
|
|
|
-// sessionToken is the token from a previous session with this node.
|
|
|
-func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (
|
|
|
- token, remotePubKey []byte,
|
|
|
- err error,
|
|
|
-) {
|
|
|
- // we are listening connection. we are responders in the
|
|
|
- // handshake. Extract info from the authentication. The initiator
|
|
|
- // starts by sending us a handshake that we need to respond to. so
|
|
|
- // we read auth message first, then respond.
|
|
|
- auth := make([]byte, iHSLen)
|
|
|
+// prv is the local client's private key.
|
|
|
+// token is the token from a previous session with this node.
|
|
|
+func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
|
|
|
+ // read remote auth sent by initiator.
|
|
|
+ auth := make([]byte, encAuthMsgLen)
|
|
|
if _, err := io.ReadFull(conn, auth); err != nil {
|
|
|
- return nil, nil, err
|
|
|
+ return s, err
|
|
|
}
|
|
|
- response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
|
|
|
+ h, err := decodeAuthMsg(prv, token, auth)
|
|
|
if err != nil {
|
|
|
- return nil, nil, err
|
|
|
+ return s, err
|
|
|
}
|
|
|
- if _, err = conn.Write(response); err != nil {
|
|
|
- return nil, nil, err
|
|
|
- }
|
|
|
- token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
|
|
|
- return token, remotePubKey, err
|
|
|
-}
|
|
|
|
|
|
-// authResp is called by peer if it accepted (but not
|
|
|
-// initiated) the connection from the remote. It is passed the initiator
|
|
|
-// handshake received and the session token belonging to the
|
|
|
-// remote initiator.
|
|
|
-//
|
|
|
-// The first return value is the authentication response (aka receiver
|
|
|
-// handshake) that is to be sent to the remote initiator.
|
|
|
-func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
|
|
|
- authResp, respNonce, initNonce, remotePubKeyS []byte,
|
|
|
- randomPrivKey *ecdsa.PrivateKey,
|
|
|
- remoteRandomPubKey *ecdsa.PublicKey,
|
|
|
- err error,
|
|
|
-) {
|
|
|
- // they prove that msg is meant for me,
|
|
|
- // I prove I possess private key if i can read it
|
|
|
- msg, err := crypto.Decrypt(prvKey, auth)
|
|
|
+ // send auth response
|
|
|
+ resp, err := h.authResp(prv, token)
|
|
|
if err != nil {
|
|
|
- return
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ if _, err = conn.Write(resp); err != nil {
|
|
|
+ return s, err
|
|
|
}
|
|
|
|
|
|
- remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen]
|
|
|
- remotePubKey, _ := importPublicKey(remotePubKeyS)
|
|
|
+ return h.secrets(auth, resp)
|
|
|
+}
|
|
|
|
|
|
- var tokenFlag byte
|
|
|
- if sessionToken == nil {
|
|
|
- // no session token found means we need to generate shared secret.
|
|
|
- // ecies shared secret is used as initial session token for new peers
|
|
|
- // generate shared key from prv and remote pubkey
|
|
|
- if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- // tokenFlag = 0x00 // redundant
|
|
|
- } else {
|
|
|
- // for known peers, we use stored token from the previous session
|
|
|
- tokenFlag = 0x01
|
|
|
+func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
|
|
|
+ var err error
|
|
|
+ h := new(encHandshake)
|
|
|
+ // generate random keypair for session
|
|
|
+ h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ // generate random nonce
|
|
|
+ h.respNonce = make([]byte, shaLen)
|
|
|
+ if _, err = rand.Read(h.respNonce); err != nil {
|
|
|
+ return nil, err
|
|
|
}
|
|
|
|
|
|
- // the initiator nonce is read off the end of the message
|
|
|
- initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
|
|
|
- // I prove that i own prv key (to derive shared secret, and read
|
|
|
- // nonce off encrypted msg) and that I own shared secret they
|
|
|
- // prove they own the private key belonging to ecdhe-random-pubk
|
|
|
- // we can now reconstruct the signed message and recover the peers
|
|
|
- // pubkey
|
|
|
- var signedMsg = xor(sessionToken, initNonce)
|
|
|
- var remoteRandomPubKeyS []byte
|
|
|
- if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil {
|
|
|
- return
|
|
|
+ msg, err := crypto.Decrypt(prv, auth)
|
|
|
+ if err != nil {
|
|
|
+ return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
|
|
|
}
|
|
|
- // convert to ECDSA standard
|
|
|
- if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
|
|
|
- return
|
|
|
+
|
|
|
+ // decode message parameters
|
|
|
+ // signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
|
|
|
+ h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
|
|
|
+ copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
|
|
|
+ rpub, err := h.remoteID.Pubkey()
|
|
|
+ if err != nil {
|
|
|
+ return nil, fmt.Errorf("bad remoteID: %#v", err)
|
|
|
}
|
|
|
+ h.remotePub = ecies.ImportECDSAPublic(rpub)
|
|
|
|
|
|
- // now we find ourselves a long task too, fill it random
|
|
|
- var resp = make([]byte, authRespLen)
|
|
|
- // generate shaLen long nonce
|
|
|
- respNonce = resp[pubLen : pubLen+shaLen]
|
|
|
- if _, err = rand.Read(respNonce); err != nil {
|
|
|
- return
|
|
|
+ // recover remote random pubkey from signed message.
|
|
|
+ if token == nil {
|
|
|
+ // TODO: it is an error if the initiator has a token and we don't. check that.
|
|
|
+
|
|
|
+ // no session token means we need to generate shared secret.
|
|
|
+ // ecies shared secret is used as initial session token for new peers.
|
|
|
+ // generate shared key from prv and remote pubkey.
|
|
|
+ if token, err = h.ecdhShared(prv); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
}
|
|
|
- // generate random keypair for session
|
|
|
- if randomPrivKey, err = crypto.GenerateKey(); err != nil {
|
|
|
- return
|
|
|
+ signedMsg := xor(token, h.initNonce)
|
|
|
+ remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
}
|
|
|
+ h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
|
|
|
+ return h, nil
|
|
|
+}
|
|
|
+
|
|
|
+// authResp generates the encrypted authentication response message.
|
|
|
+func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
|
|
|
// responder auth message
|
|
|
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
|
|
|
- var randomPubKeyS []byte
|
|
|
- if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil {
|
|
|
- return
|
|
|
+ resp := make([]byte, authRespLen)
|
|
|
+ n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
|
|
|
+ n += copy(resp[n:], h.respNonce)
|
|
|
+ if token == nil {
|
|
|
+ resp[n] = 0
|
|
|
+ } else {
|
|
|
+ resp[n] = 1
|
|
|
}
|
|
|
- copy(resp[:pubLen], randomPubKeyS)
|
|
|
- // nonce is already in the slice
|
|
|
- resp[authRespLen-1] = tokenFlag
|
|
|
-
|
|
|
// encrypt using remote-pubk
|
|
|
- // auth = eciesEncrypt(remote-pubk, msg)
|
|
|
- // why not encrypt with ecdhe-random-remote
|
|
|
- if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// newSession is called after the handshake is completed. The
|
|
|
-// arguments are values negotiated in the handshake. The return value
|
|
|
-// is a new session Token to be remembered for the next time we
|
|
|
-// connect with this peer.
|
|
|
-func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) {
|
|
|
- // 3) Now we can trust ecdhe-random-pubk to derive new keys
|
|
|
- //ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
|
|
|
- pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey)
|
|
|
- dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
- sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce))
|
|
|
- sessionToken := crypto.Sha3(sharedSecret)
|
|
|
- return sessionToken, nil
|
|
|
+ return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
|
|
|
}
|
|
|
|
|
|
// importPublicKey unmarshals 512 bit public keys.
|
|
|
-func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
|
|
|
+func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
|
|
|
var pubKey65 []byte
|
|
|
switch len(pubKey) {
|
|
|
case 64:
|
|
|
@@ -378,14 +379,15 @@ func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
|
|
|
default:
|
|
|
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
|
|
|
}
|
|
|
- return crypto.ToECDSAPub(pubKey65), nil
|
|
|
+ // TODO: fewer pointless conversions
|
|
|
+ return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
|
|
|
}
|
|
|
|
|
|
-func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) {
|
|
|
- if pubKeyEC == nil {
|
|
|
- return nil, fmt.Errorf("no ECDSA public key given")
|
|
|
+func exportPubkey(pub *ecies.PublicKey) []byte {
|
|
|
+ if pub == nil {
|
|
|
+ panic("nil pubkey")
|
|
|
}
|
|
|
- return crypto.FromECDSAPub(pubKeyEC)[1:], nil
|
|
|
+ return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
|
|
|
}
|
|
|
|
|
|
func xor(one, other []byte) (xor []byte) {
|