|
|
@@ -25,6 +25,7 @@ import (
|
|
|
crand "crypto/rand"
|
|
|
"encoding/binary"
|
|
|
"errors"
|
|
|
+ mrand "math/rand"
|
|
|
"strconv"
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
@@ -55,7 +56,7 @@ type sentMessage struct {
|
|
|
}
|
|
|
|
|
|
// ReceivedMessage represents a data packet to be received through the
|
|
|
-// Whisper protocol.
|
|
|
+// Whisper protocol and successfully decrypted.
|
|
|
type ReceivedMessage struct {
|
|
|
Raw []byte
|
|
|
|
|
|
@@ -71,7 +72,7 @@ type ReceivedMessage struct {
|
|
|
Dst *ecdsa.PublicKey // Message recipient (identity used to decode the message)
|
|
|
Topic TopicType
|
|
|
|
|
|
- SymKeyHash common.Hash // The Keccak256Hash of the key, associated with the Topic
|
|
|
+ SymKeyHash common.Hash // The Keccak256Hash of the key
|
|
|
EnvelopeHash common.Hash // Message envelope hash to act as a unique id
|
|
|
}
|
|
|
|
|
|
@@ -89,81 +90,60 @@ func (msg *ReceivedMessage) isAsymmetricEncryption() bool {
|
|
|
|
|
|
// NewSentMessage creates and initializes a non-signed, non-encrypted Whisper message.
|
|
|
func newSentMessage(params *MessageParams) (*sentMessage, error) {
|
|
|
+ const payloadSizeFieldMaxSize = 4
|
|
|
msg := sentMessage{}
|
|
|
- msg.Raw = make([]byte, 1, len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit)
|
|
|
+ msg.Raw = make([]byte, 1,
|
|
|
+ flagsLength+payloadSizeFieldMaxSize+len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit)
|
|
|
msg.Raw[0] = 0 // set all the flags to zero
|
|
|
- err := msg.appendPadding(params)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
+ msg.addPayloadSizeField(params.Payload)
|
|
|
msg.Raw = append(msg.Raw, params.Payload...)
|
|
|
- return &msg, nil
|
|
|
+ err := msg.appendPadding(params)
|
|
|
+ return &msg, err
|
|
|
}
|
|
|
|
|
|
-// getSizeOfLength returns the number of bytes necessary to encode the entire size padding (including these bytes)
|
|
|
-func getSizeOfLength(b []byte) (sz int, err error) {
|
|
|
- sz = intSize(len(b)) // first iteration
|
|
|
- sz = intSize(len(b) + sz) // second iteration
|
|
|
- if sz > 3 {
|
|
|
- err = errors.New("oversized padding parameter")
|
|
|
- }
|
|
|
- return sz, err
|
|
|
+// addPayloadSizeField appends the auxiliary field containing the size of payload
|
|
|
+func (msg *sentMessage) addPayloadSizeField(payload []byte) {
|
|
|
+ fieldSize := getSizeOfPayloadSizeField(payload)
|
|
|
+ field := make([]byte, 4)
|
|
|
+ binary.LittleEndian.PutUint32(field, uint32(len(payload)))
|
|
|
+ field = field[:fieldSize]
|
|
|
+ msg.Raw = append(msg.Raw, field...)
|
|
|
+ msg.Raw[0] |= byte(fieldSize)
|
|
|
}
|
|
|
|
|
|
-// sizeOfIntSize returns minimal number of bytes necessary to encode an integer value
|
|
|
-func intSize(i int) (s int) {
|
|
|
- for s = 1; i >= 256; s++ {
|
|
|
- i /= 256
|
|
|
+// getSizeOfPayloadSizeField returns the number of bytes necessary to encode the size of payload
|
|
|
+func getSizeOfPayloadSizeField(payload []byte) int {
|
|
|
+ s := 1
|
|
|
+ for i := len(payload); i >= 256; i /= 256 {
|
|
|
+ s++
|
|
|
}
|
|
|
return s
|
|
|
}
|
|
|
|
|
|
-// appendPadding appends the pseudorandom padding bytes and sets the padding flag.
|
|
|
-// The last byte contains the size of padding (thus, its size must not exceed 256).
|
|
|
+// appendPadding appends the padding specified in params.
|
|
|
+// If no padding is provided in params, then random padding is generated.
|
|
|
func (msg *sentMessage) appendPadding(params *MessageParams) error {
|
|
|
- rawSize := len(params.Payload) + 1
|
|
|
- if params.Src != nil {
|
|
|
- rawSize += signatureLength
|
|
|
+ if len(params.Padding) != 0 {
|
|
|
+ // padding data was provided by the Dapp, just use it as is
|
|
|
+ msg.Raw = append(msg.Raw, params.Padding...)
|
|
|
+ return nil
|
|
|
}
|
|
|
|
|
|
- if params.KeySym != nil {
|
|
|
- rawSize += AESNonceLength
|
|
|
+ rawSize := flagsLength + getSizeOfPayloadSizeField(params.Payload) + len(params.Payload)
|
|
|
+ if params.Src != nil {
|
|
|
+ rawSize += signatureLength
|
|
|
}
|
|
|
odd := rawSize % padSizeLimit
|
|
|
-
|
|
|
- if len(params.Padding) != 0 {
|
|
|
- padSize := len(params.Padding)
|
|
|
- padLengthSize, err := getSizeOfLength(params.Padding)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- totalPadSize := padSize + padLengthSize
|
|
|
- buf := make([]byte, 8)
|
|
|
- binary.LittleEndian.PutUint32(buf, uint32(totalPadSize))
|
|
|
- buf = buf[:padLengthSize]
|
|
|
- msg.Raw = append(msg.Raw, buf...)
|
|
|
- msg.Raw = append(msg.Raw, params.Padding...)
|
|
|
- msg.Raw[0] |= byte(padLengthSize) // number of bytes indicating the padding size
|
|
|
- } else if odd != 0 {
|
|
|
- totalPadSize := padSizeLimit - odd
|
|
|
- if totalPadSize > 255 {
|
|
|
- // this algorithm is only valid if padSizeLimit < 256.
|
|
|
- // if padSizeLimit will ever change, please fix the algorithm
|
|
|
- // (please see also ReceivedMessage.extractPadding() function).
|
|
|
- panic("please fix the padding algorithm before releasing new version")
|
|
|
- }
|
|
|
- buf := make([]byte, totalPadSize)
|
|
|
- _, err := crand.Read(buf[1:])
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- if totalPadSize > 6 && !validateSymmetricKey(buf) {
|
|
|
- return errors.New("failed to generate random padding of size " + strconv.Itoa(totalPadSize))
|
|
|
- }
|
|
|
- buf[0] = byte(totalPadSize)
|
|
|
- msg.Raw = append(msg.Raw, buf...)
|
|
|
- msg.Raw[0] |= byte(0x1) // number of bytes indicating the padding size
|
|
|
+ paddingSize := padSizeLimit - odd
|
|
|
+ pad := make([]byte, paddingSize)
|
|
|
+ _, err := crand.Read(pad)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
}
|
|
|
+ if !validateDataIntegrity(pad, paddingSize) {
|
|
|
+ return errors.New("failed to generate random padding of size " + strconv.Itoa(paddingSize))
|
|
|
+ }
|
|
|
+ msg.Raw = append(msg.Raw, pad...)
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
@@ -176,11 +156,11 @@ func (msg *sentMessage) sign(key *ecdsa.PrivateKey) error {
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
- msg.Raw[0] |= signatureFlag
|
|
|
+ msg.Raw[0] |= signatureFlag // it is important to set this flag before signing
|
|
|
hash := crypto.Keccak256(msg.Raw)
|
|
|
signature, err := crypto.Sign(hash, key)
|
|
|
if err != nil {
|
|
|
- msg.Raw[0] &= ^signatureFlag // clear the flag
|
|
|
+ msg.Raw[0] &= (0xFF ^ signatureFlag) // clear the flag
|
|
|
return err
|
|
|
}
|
|
|
msg.Raw = append(msg.Raw, signature...)
|
|
|
@@ -202,10 +182,9 @@ func (msg *sentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error {
|
|
|
// encryptSymmetric encrypts a message with a topic key, using AES-GCM-256.
|
|
|
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
|
|
|
func (msg *sentMessage) encryptSymmetric(key []byte) (err error) {
|
|
|
- if !validateSymmetricKey(key) {
|
|
|
- return errors.New("invalid key provided for symmetric encryption")
|
|
|
+ if !validateDataIntegrity(key, aesKeyLength) {
|
|
|
+ return errors.New("invalid key provided for symmetric encryption, size: " + strconv.Itoa(len(key)))
|
|
|
}
|
|
|
-
|
|
|
block, err := aes.NewCipher(key)
|
|
|
if err != nil {
|
|
|
return err
|
|
|
@@ -214,20 +193,46 @@ func (msg *sentMessage) encryptSymmetric(key []byte) (err error) {
|
|
|
if err != nil {
|
|
|
return err
|
|
|
}
|
|
|
-
|
|
|
- // never use more than 2^32 random nonces with a given key
|
|
|
- salt := make([]byte, aesgcm.NonceSize())
|
|
|
- _, err = crand.Read(salt)
|
|
|
+ salt, err := generateSecureRandomData(aesNonceLength) // never use more than 2^32 random nonces with a given key
|
|
|
if err != nil {
|
|
|
return err
|
|
|
- } else if !validateSymmetricKey(salt) {
|
|
|
- return errors.New("crypto/rand failed to generate salt")
|
|
|
}
|
|
|
-
|
|
|
- msg.Raw = append(aesgcm.Seal(nil, salt, msg.Raw, nil), salt...)
|
|
|
+ encrypted := aesgcm.Seal(nil, salt, msg.Raw, nil)
|
|
|
+ msg.Raw = append(encrypted, salt...)
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
+// generateSecureRandomData generates random data where extra security is required.
|
|
|
+// The purpose of this function is to prevent some bugs in software or in hardware
|
|
|
+// from delivering not-very-random data. This is especially useful for AES nonce,
|
|
|
+// where true randomness does not really matter, but it is very important to have
|
|
|
+// a unique nonce for every message.
|
|
|
+func generateSecureRandomData(length int) ([]byte, error) {
|
|
|
+ x := make([]byte, length)
|
|
|
+ y := make([]byte, length)
|
|
|
+ res := make([]byte, length)
|
|
|
+
|
|
|
+ _, err := crand.Read(x)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ } else if !validateDataIntegrity(x, length) {
|
|
|
+ return nil, errors.New("crypto/rand failed to generate secure random data")
|
|
|
+ }
|
|
|
+ _, err = mrand.Read(y)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ } else if !validateDataIntegrity(y, length) {
|
|
|
+ return nil, errors.New("math/rand failed to generate secure random data")
|
|
|
+ }
|
|
|
+ for i := 0; i < length; i++ {
|
|
|
+ res[i] = x[i] ^ y[i]
|
|
|
+ }
|
|
|
+ if !validateDataIntegrity(res, length) {
|
|
|
+ return nil, errors.New("failed to generate secure random data")
|
|
|
+ }
|
|
|
+ return res, nil
|
|
|
+}
|
|
|
+
|
|
|
// Wrap bundles the message into an Envelope to transmit over the network.
|
|
|
func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err error) {
|
|
|
if options.TTL == 0 {
|
|
|
@@ -259,12 +264,11 @@ func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err er
|
|
|
// decryptSymmetric decrypts a message with a topic key, using AES-GCM-256.
|
|
|
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
|
|
|
func (msg *ReceivedMessage) decryptSymmetric(key []byte) error {
|
|
|
- // In v6, symmetric messages are expected to contain the 12-byte
|
|
|
- // "salt" at the end of the payload.
|
|
|
- if len(msg.Raw) < AESNonceLength {
|
|
|
+ // symmetric messages are expected to contain the 12-byte nonce at the end of the payload
|
|
|
+ if len(msg.Raw) < aesNonceLength {
|
|
|
return errors.New("missing salt or invalid payload in symmetric message")
|
|
|
}
|
|
|
- salt := msg.Raw[len(msg.Raw)-AESNonceLength:]
|
|
|
+ salt := msg.Raw[len(msg.Raw)-aesNonceLength:]
|
|
|
|
|
|
block, err := aes.NewCipher(key)
|
|
|
if err != nil {
|
|
|
@@ -274,11 +278,7 @@ func (msg *ReceivedMessage) decryptSymmetric(key []byte) error {
|
|
|
if err != nil {
|
|
|
return err
|
|
|
}
|
|
|
- if len(salt) != aesgcm.NonceSize() {
|
|
|
- log.Error("decrypting the message", "AES salt size", len(salt))
|
|
|
- return errors.New("wrong AES salt size")
|
|
|
- }
|
|
|
- decrypted, err := aesgcm.Open(nil, salt, msg.Raw[:len(msg.Raw)-AESNonceLength], nil)
|
|
|
+ decrypted, err := aesgcm.Open(nil, salt, msg.Raw[:len(msg.Raw)-aesNonceLength], nil)
|
|
|
if err != nil {
|
|
|
return err
|
|
|
}
|
|
|
@@ -296,8 +296,8 @@ func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error {
|
|
|
return err
|
|
|
}
|
|
|
|
|
|
-// Validate checks the validity and extracts the fields in case of success
|
|
|
-func (msg *ReceivedMessage) Validate() bool {
|
|
|
+// ValidateAndParse checks the message validity and extracts the fields in case of success.
|
|
|
+func (msg *ReceivedMessage) ValidateAndParse() bool {
|
|
|
end := len(msg.Raw)
|
|
|
if end < 1 {
|
|
|
return false
|
|
|
@@ -308,40 +308,30 @@ func (msg *ReceivedMessage) Validate() bool {
|
|
|
if end <= 1 {
|
|
|
return false
|
|
|
}
|
|
|
- msg.Signature = msg.Raw[end:]
|
|
|
+ msg.Signature = msg.Raw[end : end+signatureLength]
|
|
|
msg.Src = msg.SigToPubKey()
|
|
|
if msg.Src == nil {
|
|
|
return false
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- padSize, ok := msg.extractPadding(end)
|
|
|
- if !ok {
|
|
|
- return false
|
|
|
+ beg := 1
|
|
|
+ payloadSize := 0
|
|
|
+ sizeOfPayloadSizeField := int(msg.Raw[0] & SizeMask) // number of bytes indicating the size of payload
|
|
|
+ if sizeOfPayloadSizeField != 0 {
|
|
|
+ payloadSize = int(bytesToUintLittleEndian(msg.Raw[beg : beg+sizeOfPayloadSizeField]))
|
|
|
+ if payloadSize+1 > end {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ beg += sizeOfPayloadSizeField
|
|
|
+ msg.Payload = msg.Raw[beg : beg+payloadSize]
|
|
|
}
|
|
|
|
|
|
- msg.Payload = msg.Raw[1+padSize : end]
|
|
|
+ beg += payloadSize
|
|
|
+ msg.Padding = msg.Raw[beg:end]
|
|
|
return true
|
|
|
}
|
|
|
|
|
|
-// extractPadding extracts the padding from raw message.
|
|
|
-// although we don't support sending messages with padding size
|
|
|
-// exceeding 255 bytes, such messages are perfectly valid, and
|
|
|
-// can be successfully decrypted.
|
|
|
-func (msg *ReceivedMessage) extractPadding(end int) (int, bool) {
|
|
|
- paddingSize := 0
|
|
|
- sz := int(msg.Raw[0] & paddingMask) // number of bytes indicating the entire size of padding (including these bytes)
|
|
|
- // could be zero -- it means no padding
|
|
|
- if sz != 0 {
|
|
|
- paddingSize = int(bytesToUintLittleEndian(msg.Raw[1 : 1+sz]))
|
|
|
- if paddingSize < sz || paddingSize+1 > end {
|
|
|
- return 0, false
|
|
|
- }
|
|
|
- msg.Padding = msg.Raw[1+sz : 1+paddingSize]
|
|
|
- }
|
|
|
- return paddingSize, true
|
|
|
-}
|
|
|
-
|
|
|
// SigToPubKey returns the public key associated to the message's
|
|
|
// signature.
|
|
|
func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey {
|
|
|
@@ -355,7 +345,7 @@ func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey {
|
|
|
return pub
|
|
|
}
|
|
|
|
|
|
-// hash calculates the SHA3 checksum of the message flags, payload and padding.
|
|
|
+// hash calculates the SHA3 checksum of the message flags, payload size field, payload and padding.
|
|
|
func (msg *ReceivedMessage) hash() []byte {
|
|
|
if isMessageSigned(msg.Raw[0]) {
|
|
|
sz := len(msg.Raw) - signatureLength
|