|
|
@@ -22,7 +22,9 @@ import (
|
|
|
"math/big"
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
+ "github.com/ethereum/go-ethereum/common/math"
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
|
+ "github.com/ethereum/go-ethereum/crypto/bn256"
|
|
|
"github.com/ethereum/go-ethereum/params"
|
|
|
"golang.org/x/crypto/ripemd160"
|
|
|
)
|
|
|
@@ -45,6 +47,19 @@ var PrecompiledContracts = map[common.Address]PrecompiledContract{
|
|
|
common.BytesToAddress([]byte{4}): &dataCopy{},
|
|
|
}
|
|
|
|
|
|
+// PrecompiledContractsMetropolis contains the default set of ethereum contracts
|
|
|
+// for metropolis hardfork
|
|
|
+var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{
|
|
|
+ common.BytesToAddress([]byte{1}): &ecrecover{},
|
|
|
+ common.BytesToAddress([]byte{2}): &sha256hash{},
|
|
|
+ common.BytesToAddress([]byte{3}): &ripemd160hash{},
|
|
|
+ common.BytesToAddress([]byte{4}): &dataCopy{},
|
|
|
+ common.BytesToAddress([]byte{5}): &bigModexp{},
|
|
|
+ common.BytesToAddress([]byte{6}): &bn256Add{},
|
|
|
+ common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
|
|
|
+ common.BytesToAddress([]byte{8}): &pairing{},
|
|
|
+}
|
|
|
+
|
|
|
// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
|
|
|
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
|
|
|
gas := p.RequiredGas(input)
|
|
|
@@ -132,3 +147,190 @@ func (c *dataCopy) RequiredGas(input []byte) uint64 {
|
|
|
func (c *dataCopy) Run(in []byte) ([]byte, error) {
|
|
|
return in, nil
|
|
|
}
|
|
|
+
|
|
|
+// bigModexp implements a native big integer exponential modular operation.
|
|
|
+type bigModexp struct{}
|
|
|
+
|
|
|
+// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
|
+//
|
|
|
+// This method does not require any overflow checking as the input size gas costs
|
|
|
+// required for anything significant is so high it's impossible to pay for.
|
|
|
+func (c *bigModexp) RequiredGas(input []byte) uint64 {
|
|
|
+ // TODO reword required gas to have error reporting and convert arithmetic
|
|
|
+ // to uint64.
|
|
|
+ if len(input) < 3*32 {
|
|
|
+ input = append(input, make([]byte, 3*32-len(input))...)
|
|
|
+ }
|
|
|
+ var (
|
|
|
+ baseLen = new(big.Int).SetBytes(input[:31])
|
|
|
+ expLen = math.BigMax(new(big.Int).SetBytes(input[32:64]), big.NewInt(1))
|
|
|
+ modLen = new(big.Int).SetBytes(input[65:97])
|
|
|
+ )
|
|
|
+ x := new(big.Int).Set(math.BigMax(baseLen, modLen))
|
|
|
+ x.Mul(x, x)
|
|
|
+ x.Mul(x, expLen)
|
|
|
+ x.Div(x, new(big.Int).SetUint64(params.QuadCoeffDiv))
|
|
|
+
|
|
|
+ return x.Uint64()
|
|
|
+}
|
|
|
+
|
|
|
+func (c *bigModexp) Run(input []byte) ([]byte, error) {
|
|
|
+ if len(input) < 3*32 {
|
|
|
+ input = append(input, make([]byte, 3*32-len(input))...)
|
|
|
+ }
|
|
|
+ // why 32-byte? These values won't fit anyway
|
|
|
+ var (
|
|
|
+ baseLen = new(big.Int).SetBytes(input[:32]).Uint64()
|
|
|
+ expLen = new(big.Int).SetBytes(input[32:64]).Uint64()
|
|
|
+ modLen = new(big.Int).SetBytes(input[64:96]).Uint64()
|
|
|
+ )
|
|
|
+
|
|
|
+ input = input[96:]
|
|
|
+ if uint64(len(input)) < baseLen {
|
|
|
+ input = append(input, make([]byte, baseLen-uint64(len(input)))...)
|
|
|
+ }
|
|
|
+ base := new(big.Int).SetBytes(input[:baseLen])
|
|
|
+
|
|
|
+ input = input[baseLen:]
|
|
|
+ if uint64(len(input)) < expLen {
|
|
|
+ input = append(input, make([]byte, expLen-uint64(len(input)))...)
|
|
|
+ }
|
|
|
+ exp := new(big.Int).SetBytes(input[:expLen])
|
|
|
+
|
|
|
+ input = input[expLen:]
|
|
|
+ if uint64(len(input)) < modLen {
|
|
|
+ input = append(input, make([]byte, modLen-uint64(len(input)))...)
|
|
|
+ }
|
|
|
+ mod := new(big.Int).SetBytes(input[:modLen])
|
|
|
+
|
|
|
+ return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), len(input[:modLen])), nil
|
|
|
+}
|
|
|
+
|
|
|
+type bn256Add struct{}
|
|
|
+
|
|
|
+// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
|
+//
|
|
|
+// This method does not require any overflow checking as the input size gas costs
|
|
|
+// required for anything significant is so high it's impossible to pay for.
|
|
|
+func (c *bn256Add) RequiredGas(input []byte) uint64 {
|
|
|
+ return 0 // TODO
|
|
|
+}
|
|
|
+
|
|
|
+func (c *bn256Add) Run(in []byte) ([]byte, error) {
|
|
|
+ in = common.RightPadBytes(in, 128)
|
|
|
+
|
|
|
+ x, onCurve := new(bn256.G1).Unmarshal(in[:64])
|
|
|
+ if !onCurve {
|
|
|
+ return nil, errNotOnCurve
|
|
|
+ }
|
|
|
+ gx, gy, _, _ := x.CurvePoints()
|
|
|
+ if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
|
|
|
+ return nil, errInvalidCurvePoint
|
|
|
+ }
|
|
|
+
|
|
|
+ y, onCurve := new(bn256.G1).Unmarshal(in[64:128])
|
|
|
+ if !onCurve {
|
|
|
+ return nil, errNotOnCurve
|
|
|
+ }
|
|
|
+ gx, gy, _, _ = y.CurvePoints()
|
|
|
+ if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
|
|
|
+ return nil, errInvalidCurvePoint
|
|
|
+ }
|
|
|
+ x.Add(x, y)
|
|
|
+
|
|
|
+ return x.Marshal(), nil
|
|
|
+}
|
|
|
+
|
|
|
+type bn256ScalarMul struct{}
|
|
|
+
|
|
|
+// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
|
+//
|
|
|
+// This method does not require any overflow checking as the input size gas costs
|
|
|
+// required for anything significant is so high it's impossible to pay for.
|
|
|
+func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
|
|
|
+ return 0 // TODO
|
|
|
+}
|
|
|
+
|
|
|
+func (c *bn256ScalarMul) Run(in []byte) ([]byte, error) {
|
|
|
+ in = common.RightPadBytes(in, 96)
|
|
|
+
|
|
|
+ g1, onCurve := new(bn256.G1).Unmarshal(in[:64])
|
|
|
+ if !onCurve {
|
|
|
+ return nil, errNotOnCurve
|
|
|
+ }
|
|
|
+ x, y, _, _ := g1.CurvePoints()
|
|
|
+ if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
|
|
|
+ return nil, errInvalidCurvePoint
|
|
|
+ }
|
|
|
+ g1.ScalarMult(g1, new(big.Int).SetBytes(in[64:96]))
|
|
|
+
|
|
|
+ return g1.Marshal(), nil
|
|
|
+}
|
|
|
+
|
|
|
+// pairing implements a pairing pre-compile for the bn256 curve
|
|
|
+type pairing struct{}
|
|
|
+
|
|
|
+// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
|
+//
|
|
|
+// This method does not require any overflow checking as the input size gas costs
|
|
|
+// required for anything significant is so high it's impossible to pay for.
|
|
|
+func (c *pairing) RequiredGas(input []byte) uint64 {
|
|
|
+ //return 0 // TODO
|
|
|
+ k := (len(input) + 191) / pairSize
|
|
|
+ return uint64(60000*k + 40000)
|
|
|
+}
|
|
|
+
|
|
|
+const pairSize = 192
|
|
|
+
|
|
|
+var (
|
|
|
+ true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
|
|
|
+ fals32Byte = make([]byte, 32)
|
|
|
+ errNotOnCurve = errors.New("point not on elliptic curve")
|
|
|
+ errInvalidCurvePoint = errors.New("invalid elliptic curve point")
|
|
|
+)
|
|
|
+
|
|
|
+func (c *pairing) Run(in []byte) ([]byte, error) {
|
|
|
+ if len(in) == 0 {
|
|
|
+ return true32Byte, nil
|
|
|
+ }
|
|
|
+
|
|
|
+ if len(in)%pairSize > 0 {
|
|
|
+ return nil, errBadPrecompileInput
|
|
|
+ }
|
|
|
+
|
|
|
+ var (
|
|
|
+ g1s []*bn256.G1
|
|
|
+ g2s []*bn256.G2
|
|
|
+ )
|
|
|
+ for i := 0; i < len(in); i += pairSize {
|
|
|
+ g1, onCurve := new(bn256.G1).Unmarshal(in[i : i+64])
|
|
|
+ if !onCurve {
|
|
|
+ return nil, errNotOnCurve
|
|
|
+ }
|
|
|
+
|
|
|
+ x, y, _, _ := g1.CurvePoints()
|
|
|
+ if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
|
|
|
+ return nil, errInvalidCurvePoint
|
|
|
+ }
|
|
|
+
|
|
|
+ g2, onCurve := new(bn256.G2).Unmarshal(in[i+64 : i+192])
|
|
|
+ if !onCurve {
|
|
|
+ return nil, errNotOnCurve
|
|
|
+ }
|
|
|
+ x2, y2, _, _ := g2.CurvePoints()
|
|
|
+ if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 ||
|
|
|
+ y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 {
|
|
|
+ return nil, errInvalidCurvePoint
|
|
|
+ }
|
|
|
+
|
|
|
+ g1s = append(g1s, g1)
|
|
|
+ g2s = append(g2s, g2)
|
|
|
+ }
|
|
|
+
|
|
|
+ isOne := bn256.PairingCheck(g1s, g2s)
|
|
|
+ if isOne {
|
|
|
+ return true32Byte, nil
|
|
|
+ }
|
|
|
+
|
|
|
+ return fals32Byte, nil
|
|
|
+}
|