|
|
@@ -0,0 +1,404 @@
|
|
|
+// Copyright 2020 The go-ethereum Authors
|
|
|
+// This file is part of the go-ethereum library.
|
|
|
+//
|
|
|
+// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
+// it under the terms of the GNU Lesser General Public License as published by
|
|
|
+// the Free Software Foundation, either version 3 of the License, or
|
|
|
+// (at your option) any later version.
|
|
|
+//
|
|
|
+// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+// GNU Lesser General Public License for more details.
|
|
|
+//
|
|
|
+// You should have received a copy of the GNU Lesser General Public License
|
|
|
+// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
+
|
|
|
+package trie
|
|
|
+
|
|
|
+import (
|
|
|
+ "fmt"
|
|
|
+ "sync"
|
|
|
+
|
|
|
+ "github.com/ethereum/go-ethereum/common"
|
|
|
+ "github.com/ethereum/go-ethereum/ethdb"
|
|
|
+ "github.com/ethereum/go-ethereum/log"
|
|
|
+ "github.com/ethereum/go-ethereum/rlp"
|
|
|
+)
|
|
|
+
|
|
|
+var stPool = sync.Pool{
|
|
|
+ New: func() interface{} {
|
|
|
+ return NewStackTrie(nil)
|
|
|
+ },
|
|
|
+}
|
|
|
+
|
|
|
+func stackTrieFromPool(db ethdb.KeyValueStore) *StackTrie {
|
|
|
+ st := stPool.Get().(*StackTrie)
|
|
|
+ st.db = db
|
|
|
+ return st
|
|
|
+}
|
|
|
+
|
|
|
+func returnToPool(st *StackTrie) {
|
|
|
+ st.Reset()
|
|
|
+ stPool.Put(st)
|
|
|
+}
|
|
|
+
|
|
|
+// StackTrie is a trie implementation that expects keys to be inserted
|
|
|
+// in order. Once it determines that a subtree will no longer be inserted
|
|
|
+// into, it will hash it and free up the memory it uses.
|
|
|
+type StackTrie struct {
|
|
|
+ nodeType uint8 // node type (as in branch, ext, leaf)
|
|
|
+ val []byte // value contained by this node if it's a leaf
|
|
|
+ key []byte // key chunk covered by this (full|ext) node
|
|
|
+ keyOffset int // offset of the key chunk inside a full key
|
|
|
+ children [16]*StackTrie // list of children (for fullnodes and exts)
|
|
|
+
|
|
|
+ db ethdb.KeyValueStore // Pointer to the commit db, can be nil
|
|
|
+}
|
|
|
+
|
|
|
+// NewStackTrie allocates and initializes an empty trie.
|
|
|
+func NewStackTrie(db ethdb.KeyValueStore) *StackTrie {
|
|
|
+ return &StackTrie{
|
|
|
+ nodeType: emptyNode,
|
|
|
+ db: db,
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+func newLeaf(ko int, key, val []byte, db ethdb.KeyValueStore) *StackTrie {
|
|
|
+ st := stackTrieFromPool(db)
|
|
|
+ st.nodeType = leafNode
|
|
|
+ st.keyOffset = ko
|
|
|
+ st.key = append(st.key, key[ko:]...)
|
|
|
+ st.val = val
|
|
|
+ return st
|
|
|
+}
|
|
|
+
|
|
|
+func newExt(ko int, key []byte, child *StackTrie, db ethdb.KeyValueStore) *StackTrie {
|
|
|
+ st := stackTrieFromPool(db)
|
|
|
+ st.nodeType = extNode
|
|
|
+ st.keyOffset = ko
|
|
|
+ st.key = append(st.key, key[ko:]...)
|
|
|
+ st.children[0] = child
|
|
|
+ return st
|
|
|
+}
|
|
|
+
|
|
|
+// List all values that StackTrie#nodeType can hold
|
|
|
+const (
|
|
|
+ emptyNode = iota
|
|
|
+ branchNode
|
|
|
+ extNode
|
|
|
+ leafNode
|
|
|
+ hashedNode
|
|
|
+)
|
|
|
+
|
|
|
+// TryUpdate inserts a (key, value) pair into the stack trie
|
|
|
+func (st *StackTrie) TryUpdate(key, value []byte) error {
|
|
|
+ k := keybytesToHex(key)
|
|
|
+ if len(value) == 0 {
|
|
|
+ panic("deletion not supported")
|
|
|
+ }
|
|
|
+ st.insert(k[:len(k)-1], value)
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+func (st *StackTrie) Update(key, value []byte) {
|
|
|
+ if err := st.TryUpdate(key, value); err != nil {
|
|
|
+ log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+func (st *StackTrie) Reset() {
|
|
|
+ st.db = nil
|
|
|
+ st.key = st.key[:0]
|
|
|
+ st.val = st.val[:0]
|
|
|
+ for i := range st.children {
|
|
|
+ st.children[i] = nil
|
|
|
+ }
|
|
|
+ st.nodeType = emptyNode
|
|
|
+ st.keyOffset = 0
|
|
|
+}
|
|
|
+
|
|
|
+// Helper function that, given a full key, determines the index
|
|
|
+// at which the chunk pointed by st.keyOffset is different from
|
|
|
+// the same chunk in the full key.
|
|
|
+func (st *StackTrie) getDiffIndex(key []byte) int {
|
|
|
+ diffindex := 0
|
|
|
+ for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ {
|
|
|
+ }
|
|
|
+ return diffindex
|
|
|
+}
|
|
|
+
|
|
|
+// Helper function to that inserts a (key, value) pair into
|
|
|
+// the trie.
|
|
|
+func (st *StackTrie) insert(key, value []byte) {
|
|
|
+ switch st.nodeType {
|
|
|
+ case branchNode: /* Branch */
|
|
|
+ idx := int(key[st.keyOffset])
|
|
|
+ // Unresolve elder siblings
|
|
|
+ for i := idx - 1; i >= 0; i-- {
|
|
|
+ if st.children[i] != nil {
|
|
|
+ if st.children[i].nodeType != hashedNode {
|
|
|
+ st.children[i].hash()
|
|
|
+ }
|
|
|
+ break
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Add new child
|
|
|
+ if st.children[idx] == nil {
|
|
|
+ st.children[idx] = stackTrieFromPool(st.db)
|
|
|
+ st.children[idx].keyOffset = st.keyOffset + 1
|
|
|
+ }
|
|
|
+ st.children[idx].insert(key, value)
|
|
|
+ case extNode: /* Ext */
|
|
|
+ // Compare both key chunks and see where they differ
|
|
|
+ diffidx := st.getDiffIndex(key)
|
|
|
+
|
|
|
+ // Check if chunks are identical. If so, recurse into
|
|
|
+ // the child node. Otherwise, the key has to be split
|
|
|
+ // into 1) an optional common prefix, 2) the fullnode
|
|
|
+ // representing the two differing path, and 3) a leaf
|
|
|
+ // for each of the differentiated subtrees.
|
|
|
+ if diffidx == len(st.key) {
|
|
|
+ // Ext key and key segment are identical, recurse into
|
|
|
+ // the child node.
|
|
|
+ st.children[0].insert(key, value)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ // Save the original part. Depending if the break is
|
|
|
+ // at the extension's last byte or not, create an
|
|
|
+ // intermediate extension or use the extension's child
|
|
|
+ // node directly.
|
|
|
+ var n *StackTrie
|
|
|
+ if diffidx < len(st.key)-1 {
|
|
|
+ n = newExt(diffidx+1, st.key, st.children[0], st.db)
|
|
|
+ } else {
|
|
|
+ // Break on the last byte, no need to insert
|
|
|
+ // an extension node: reuse the current node
|
|
|
+ n = st.children[0]
|
|
|
+ }
|
|
|
+ // Convert to hash
|
|
|
+ n.hash()
|
|
|
+ var p *StackTrie
|
|
|
+ if diffidx == 0 {
|
|
|
+ // the break is on the first byte, so
|
|
|
+ // the current node is converted into
|
|
|
+ // a branch node.
|
|
|
+ st.children[0] = nil
|
|
|
+ p = st
|
|
|
+ st.nodeType = branchNode
|
|
|
+ } else {
|
|
|
+ // the common prefix is at least one byte
|
|
|
+ // long, insert a new intermediate branch
|
|
|
+ // node.
|
|
|
+ st.children[0] = stackTrieFromPool(st.db)
|
|
|
+ st.children[0].nodeType = branchNode
|
|
|
+ st.children[0].keyOffset = st.keyOffset + diffidx
|
|
|
+ p = st.children[0]
|
|
|
+ }
|
|
|
+ // Create a leaf for the inserted part
|
|
|
+ o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db)
|
|
|
+
|
|
|
+ // Insert both child leaves where they belong:
|
|
|
+ origIdx := st.key[diffidx]
|
|
|
+ newIdx := key[diffidx+st.keyOffset]
|
|
|
+ p.children[origIdx] = n
|
|
|
+ p.children[newIdx] = o
|
|
|
+ st.key = st.key[:diffidx]
|
|
|
+
|
|
|
+ case leafNode: /* Leaf */
|
|
|
+ // Compare both key chunks and see where they differ
|
|
|
+ diffidx := st.getDiffIndex(key)
|
|
|
+
|
|
|
+ // Overwriting a key isn't supported, which means that
|
|
|
+ // the current leaf is expected to be split into 1) an
|
|
|
+ // optional extension for the common prefix of these 2
|
|
|
+ // keys, 2) a fullnode selecting the path on which the
|
|
|
+ // keys differ, and 3) one leaf for the differentiated
|
|
|
+ // component of each key.
|
|
|
+ if diffidx >= len(st.key) {
|
|
|
+ panic("Trying to insert into existing key")
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check if the split occurs at the first nibble of the
|
|
|
+ // chunk. In that case, no prefix extnode is necessary.
|
|
|
+ // Otherwise, create that
|
|
|
+ var p *StackTrie
|
|
|
+ if diffidx == 0 {
|
|
|
+ // Convert current leaf into a branch
|
|
|
+ st.nodeType = branchNode
|
|
|
+ p = st
|
|
|
+ st.children[0] = nil
|
|
|
+ } else {
|
|
|
+ // Convert current node into an ext,
|
|
|
+ // and insert a child branch node.
|
|
|
+ st.nodeType = extNode
|
|
|
+ st.children[0] = NewStackTrie(st.db)
|
|
|
+ st.children[0].nodeType = branchNode
|
|
|
+ st.children[0].keyOffset = st.keyOffset + diffidx
|
|
|
+ p = st.children[0]
|
|
|
+ }
|
|
|
+
|
|
|
+ // Create the two child leaves: the one containing the
|
|
|
+ // original value and the one containing the new value
|
|
|
+ // The child leave will be hashed directly in order to
|
|
|
+ // free up some memory.
|
|
|
+ origIdx := st.key[diffidx]
|
|
|
+ p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db)
|
|
|
+ p.children[origIdx].hash()
|
|
|
+
|
|
|
+ newIdx := key[diffidx+st.keyOffset]
|
|
|
+ p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db)
|
|
|
+
|
|
|
+ // Finally, cut off the key part that has been passed
|
|
|
+ // over to the children.
|
|
|
+ st.key = st.key[:diffidx]
|
|
|
+ st.val = nil
|
|
|
+ case emptyNode: /* Empty */
|
|
|
+ st.nodeType = leafNode
|
|
|
+ st.key = key[st.keyOffset:]
|
|
|
+ st.val = value
|
|
|
+ case hashedNode:
|
|
|
+ panic("trying to insert into hash")
|
|
|
+ default:
|
|
|
+ panic("invalid type")
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// hash() hashes the node 'st' and converts it into 'hashedNode', if possible.
|
|
|
+// Possible outcomes:
|
|
|
+// 1. The rlp-encoded value was >= 32 bytes:
|
|
|
+// - Then the 32-byte `hash` will be accessible in `st.val`.
|
|
|
+// - And the 'st.type' will be 'hashedNode'
|
|
|
+// 2. The rlp-encoded value was < 32 bytes
|
|
|
+// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
|
|
|
+// - And the 'st.type' will be 'hashedNode' AGAIN
|
|
|
+//
|
|
|
+// This method will also:
|
|
|
+// set 'st.type' to hashedNode
|
|
|
+// clear 'st.key'
|
|
|
+func (st *StackTrie) hash() {
|
|
|
+ /* Shortcut if node is already hashed */
|
|
|
+ if st.nodeType == hashedNode {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ // The 'hasher' is taken from a pool, but we don't actually
|
|
|
+ // claim an instance until all children are done with their hashing,
|
|
|
+ // and we actually need one
|
|
|
+ var h *hasher
|
|
|
+
|
|
|
+ switch st.nodeType {
|
|
|
+ case branchNode:
|
|
|
+ var nodes [17]node
|
|
|
+ for i, child := range st.children {
|
|
|
+ if child == nil {
|
|
|
+ nodes[i] = nilValueNode
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ child.hash()
|
|
|
+ if len(child.val) < 32 {
|
|
|
+ nodes[i] = rawNode(child.val)
|
|
|
+ } else {
|
|
|
+ nodes[i] = hashNode(child.val)
|
|
|
+ }
|
|
|
+ st.children[i] = nil // Reclaim mem from subtree
|
|
|
+ returnToPool(child)
|
|
|
+ }
|
|
|
+ nodes[16] = nilValueNode
|
|
|
+ h = newHasher(false)
|
|
|
+ defer returnHasherToPool(h)
|
|
|
+ h.tmp.Reset()
|
|
|
+ if err := rlp.Encode(&h.tmp, nodes); err != nil {
|
|
|
+ panic(err)
|
|
|
+ }
|
|
|
+ case extNode:
|
|
|
+ h = newHasher(false)
|
|
|
+ defer returnHasherToPool(h)
|
|
|
+ h.tmp.Reset()
|
|
|
+ st.children[0].hash()
|
|
|
+ // This is also possible:
|
|
|
+ //sz := hexToCompactInPlace(st.key)
|
|
|
+ //n := [][]byte{
|
|
|
+ // st.key[:sz],
|
|
|
+ // st.children[0].val,
|
|
|
+ //}
|
|
|
+ n := [][]byte{
|
|
|
+ hexToCompact(st.key),
|
|
|
+ st.children[0].val,
|
|
|
+ }
|
|
|
+ if err := rlp.Encode(&h.tmp, n); err != nil {
|
|
|
+ panic(err)
|
|
|
+ }
|
|
|
+ returnToPool(st.children[0])
|
|
|
+ st.children[0] = nil // Reclaim mem from subtree
|
|
|
+ case leafNode:
|
|
|
+ h = newHasher(false)
|
|
|
+ defer returnHasherToPool(h)
|
|
|
+ h.tmp.Reset()
|
|
|
+ st.key = append(st.key, byte(16))
|
|
|
+ sz := hexToCompactInPlace(st.key)
|
|
|
+ n := [][]byte{st.key[:sz], st.val}
|
|
|
+ if err := rlp.Encode(&h.tmp, n); err != nil {
|
|
|
+ panic(err)
|
|
|
+ }
|
|
|
+ case emptyNode:
|
|
|
+ st.val = st.val[:0]
|
|
|
+ st.val = append(st.val, emptyRoot[:]...)
|
|
|
+ st.key = st.key[:0]
|
|
|
+ st.nodeType = hashedNode
|
|
|
+ return
|
|
|
+ default:
|
|
|
+ panic("Invalid node type")
|
|
|
+ }
|
|
|
+ st.key = st.key[:0]
|
|
|
+ st.nodeType = hashedNode
|
|
|
+ if len(h.tmp) < 32 {
|
|
|
+ st.val = st.val[:0]
|
|
|
+ st.val = append(st.val, h.tmp...)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ // Going to write the hash to the 'val'. Need to ensure it's properly sized first
|
|
|
+ // Typically, 'branchNode's will have no 'val', and require this allocation
|
|
|
+ if required := 32 - len(st.val); required > 0 {
|
|
|
+ buf := make([]byte, required)
|
|
|
+ st.val = append(st.val, buf...)
|
|
|
+ }
|
|
|
+ st.val = st.val[:32]
|
|
|
+ h.sha.Reset()
|
|
|
+ h.sha.Write(h.tmp)
|
|
|
+ h.sha.Read(st.val)
|
|
|
+ if st.db != nil {
|
|
|
+ // TODO! Is it safe to Put the slice here?
|
|
|
+ // Do all db implementations copy the value provided?
|
|
|
+ st.db.Put(st.val, h.tmp)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Hash returns the hash of the current node
|
|
|
+func (st *StackTrie) Hash() (h common.Hash) {
|
|
|
+ st.hash()
|
|
|
+ if len(st.val) != 32 {
|
|
|
+ // If the node's RLP isn't 32 bytes long, the node will not
|
|
|
+ // be hashed, and instead contain the rlp-encoding of the
|
|
|
+ // node. For the top level node, we need to force the hashing.
|
|
|
+ ret := make([]byte, 32)
|
|
|
+ h := newHasher(false)
|
|
|
+ defer returnHasherToPool(h)
|
|
|
+ h.sha.Reset()
|
|
|
+ h.sha.Write(st.val)
|
|
|
+ h.sha.Read(ret)
|
|
|
+ return common.BytesToHash(ret)
|
|
|
+ }
|
|
|
+ return common.BytesToHash(st.val)
|
|
|
+}
|
|
|
+
|
|
|
+// Commit will commit the current node to database db
|
|
|
+func (st *StackTrie) Commit(db ethdb.KeyValueStore) common.Hash {
|
|
|
+ oldDb := st.db
|
|
|
+ st.db = db
|
|
|
+ defer func() {
|
|
|
+ st.db = oldDb
|
|
|
+ }()
|
|
|
+ st.hash()
|
|
|
+ h := common.BytesToHash(st.val)
|
|
|
+ return h
|
|
|
+}
|