|
|
@@ -1,4 +1,4 @@
|
|
|
-// Copyright 2016 The go-ethereum Authors
|
|
|
+// Copyright 2019 The go-ethereum Authors
|
|
|
// This file is part of the go-ethereum library.
|
|
|
//
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
@@ -20,17 +20,10 @@ import (
|
|
|
"hash"
|
|
|
"sync"
|
|
|
|
|
|
- "github.com/ethereum/go-ethereum/common"
|
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
|
"golang.org/x/crypto/sha3"
|
|
|
)
|
|
|
|
|
|
-type hasher struct {
|
|
|
- tmp sliceBuffer
|
|
|
- sha keccakState
|
|
|
- onleaf LeafCallback
|
|
|
-}
|
|
|
-
|
|
|
// keccakState wraps sha3.state. In addition to the usual hash methods, it also supports
|
|
|
// Read to get a variable amount of data from the hash state. Read is faster than Sum
|
|
|
// because it doesn't copy the internal state, but also modifies the internal state.
|
|
|
@@ -50,7 +43,14 @@ func (b *sliceBuffer) Reset() {
|
|
|
*b = (*b)[:0]
|
|
|
}
|
|
|
|
|
|
-// hashers live in a global db.
|
|
|
+// hasher is a type used for the trie Hash operation. A hasher has some
|
|
|
+// internal preallocated temp space
|
|
|
+type hasher struct {
|
|
|
+ sha keccakState
|
|
|
+ tmp sliceBuffer
|
|
|
+}
|
|
|
+
|
|
|
+// hasherPool holds pureHashers
|
|
|
var hasherPool = sync.Pool{
|
|
|
New: func() interface{} {
|
|
|
return &hasher{
|
|
|
@@ -60,9 +60,8 @@ var hasherPool = sync.Pool{
|
|
|
},
|
|
|
}
|
|
|
|
|
|
-func newHasher(onleaf LeafCallback) *hasher {
|
|
|
+func newHasher() *hasher {
|
|
|
h := hasherPool.Get().(*hasher)
|
|
|
- h.onleaf = onleaf
|
|
|
return h
|
|
|
}
|
|
|
|
|
|
@@ -72,144 +71,126 @@ func returnHasherToPool(h *hasher) {
|
|
|
|
|
|
// hash collapses a node down into a hash node, also returning a copy of the
|
|
|
// original node initialized with the computed hash to replace the original one.
|
|
|
-func (h *hasher) hash(n node, db *Database, force bool) (node, node, error) {
|
|
|
- // If we're not storing the node, just hashing, use available cached data
|
|
|
- if hash, dirty := n.cache(); hash != nil {
|
|
|
- if db == nil {
|
|
|
- return hash, n, nil
|
|
|
- }
|
|
|
- if !dirty {
|
|
|
- switch n.(type) {
|
|
|
- case *fullNode, *shortNode:
|
|
|
- return hash, hash, nil
|
|
|
- default:
|
|
|
- return hash, n, nil
|
|
|
- }
|
|
|
- }
|
|
|
+func (h *hasher) hash(n node, force bool) (hashed node, cached node) {
|
|
|
+ // We're not storing the node, just hashing, use available cached data
|
|
|
+ if hash, _ := n.cache(); hash != nil {
|
|
|
+ return hash, n
|
|
|
}
|
|
|
// Trie not processed yet or needs storage, walk the children
|
|
|
- collapsed, cached, err := h.hashChildren(n, db)
|
|
|
- if err != nil {
|
|
|
- return hashNode{}, n, err
|
|
|
- }
|
|
|
- hashed, err := h.store(collapsed, db, force)
|
|
|
- if err != nil {
|
|
|
- return hashNode{}, n, err
|
|
|
- }
|
|
|
- // Cache the hash of the node for later reuse and remove
|
|
|
- // the dirty flag in commit mode. It's fine to assign these values directly
|
|
|
- // without copying the node first because hashChildren copies it.
|
|
|
- cachedHash, _ := hashed.(hashNode)
|
|
|
- switch cn := cached.(type) {
|
|
|
+ switch n := n.(type) {
|
|
|
case *shortNode:
|
|
|
- cn.flags.hash = cachedHash
|
|
|
- if db != nil {
|
|
|
- cn.flags.dirty = false
|
|
|
+ collapsed, cached := h.hashShortNodeChildren(n)
|
|
|
+ hashed := h.shortnodeToHash(collapsed, force)
|
|
|
+ // We need to retain the possibly _not_ hashed node, in case it was too
|
|
|
+ // small to be hashed
|
|
|
+ if hn, ok := hashed.(hashNode); ok {
|
|
|
+ cached.flags.hash = hn
|
|
|
+ } else {
|
|
|
+ cached.flags.hash = nil
|
|
|
}
|
|
|
+ return hashed, cached
|
|
|
case *fullNode:
|
|
|
- cn.flags.hash = cachedHash
|
|
|
- if db != nil {
|
|
|
- cn.flags.dirty = false
|
|
|
+ collapsed, cached := h.hashFullNodeChildren(n)
|
|
|
+ hashed = h.fullnodeToHash(collapsed, force)
|
|
|
+ if hn, ok := hashed.(hashNode); ok {
|
|
|
+ cached.flags.hash = hn
|
|
|
+ } else {
|
|
|
+ cached.flags.hash = nil
|
|
|
}
|
|
|
+ return hashed, cached
|
|
|
+ default:
|
|
|
+ // Value and hash nodes don't have children so they're left as were
|
|
|
+ return n, n
|
|
|
}
|
|
|
- return hashed, cached, nil
|
|
|
}
|
|
|
|
|
|
-// hashChildren replaces the children of a node with their hashes if the encoded
|
|
|
-// size of the child is larger than a hash, returning the collapsed node as well
|
|
|
-// as a replacement for the original node with the child hashes cached in.
|
|
|
-func (h *hasher) hashChildren(original node, db *Database) (node, node, error) {
|
|
|
- var err error
|
|
|
-
|
|
|
- switch n := original.(type) {
|
|
|
- case *shortNode:
|
|
|
- // Hash the short node's child, caching the newly hashed subtree
|
|
|
- collapsed, cached := n.copy(), n.copy()
|
|
|
- collapsed.Key = hexToCompact(n.Key)
|
|
|
- cached.Key = common.CopyBytes(n.Key)
|
|
|
-
|
|
|
- if _, ok := n.Val.(valueNode); !ok {
|
|
|
- collapsed.Val, cached.Val, err = h.hash(n.Val, db, false)
|
|
|
- if err != nil {
|
|
|
- return original, original, err
|
|
|
- }
|
|
|
- }
|
|
|
- return collapsed, cached, nil
|
|
|
+// hashShortNodeChildren collapses the short node. The returned collapsed node
|
|
|
+// holds a live reference to the Key, and must not be modified.
|
|
|
+// The cached
|
|
|
+func (h *hasher) hashShortNodeChildren(n *shortNode) (collapsed, cached *shortNode) {
|
|
|
+ // Hash the short node's child, caching the newly hashed subtree
|
|
|
+ collapsed, cached = n.copy(), n.copy()
|
|
|
+ // Previously, we did copy this one. We don't seem to need to actually
|
|
|
+ // do that, since we don't overwrite/reuse keys
|
|
|
+ //cached.Key = common.CopyBytes(n.Key)
|
|
|
+ collapsed.Key = hexToCompact(n.Key)
|
|
|
+ // Unless the child is a valuenode or hashnode, hash it
|
|
|
+ switch n.Val.(type) {
|
|
|
+ case *fullNode, *shortNode:
|
|
|
+ collapsed.Val, cached.Val = h.hash(n.Val, false)
|
|
|
+ }
|
|
|
+ return collapsed, cached
|
|
|
+}
|
|
|
|
|
|
- case *fullNode:
|
|
|
- // Hash the full node's children, caching the newly hashed subtrees
|
|
|
- collapsed, cached := n.copy(), n.copy()
|
|
|
-
|
|
|
- for i := 0; i < 16; i++ {
|
|
|
- if n.Children[i] != nil {
|
|
|
- collapsed.Children[i], cached.Children[i], err = h.hash(n.Children[i], db, false)
|
|
|
- if err != nil {
|
|
|
- return original, original, err
|
|
|
- }
|
|
|
- }
|
|
|
+func (h *hasher) hashFullNodeChildren(n *fullNode) (collapsed *fullNode, cached *fullNode) {
|
|
|
+ // Hash the full node's children, caching the newly hashed subtrees
|
|
|
+ cached = n.copy()
|
|
|
+ collapsed = n.copy()
|
|
|
+ for i := 0; i < 16; i++ {
|
|
|
+ if child := n.Children[i]; child != nil {
|
|
|
+ collapsed.Children[i], cached.Children[i] = h.hash(child, false)
|
|
|
+ } else {
|
|
|
+ collapsed.Children[i] = nilValueNode
|
|
|
}
|
|
|
- cached.Children[16] = n.Children[16]
|
|
|
- return collapsed, cached, nil
|
|
|
-
|
|
|
- default:
|
|
|
- // Value and hash nodes don't have children so they're left as were
|
|
|
- return n, original, nil
|
|
|
}
|
|
|
+ cached.Children[16] = n.Children[16]
|
|
|
+ return collapsed, cached
|
|
|
}
|
|
|
|
|
|
-// store hashes the node n and if we have a storage layer specified, it writes
|
|
|
-// the key/value pair to it and tracks any node->child references as well as any
|
|
|
-// node->external trie references.
|
|
|
-func (h *hasher) store(n node, db *Database, force bool) (node, error) {
|
|
|
- // Don't store hashes or empty nodes.
|
|
|
- if _, isHash := n.(hashNode); n == nil || isHash {
|
|
|
- return n, nil
|
|
|
- }
|
|
|
- // Generate the RLP encoding of the node
|
|
|
+// shortnodeToHash creates a hashNode from a shortNode. The supplied shortnode
|
|
|
+// should have hex-type Key, which will be converted (without modification)
|
|
|
+// into compact form for RLP encoding.
|
|
|
+// If the rlp data is smaller than 32 bytes, `nil` is returned.
|
|
|
+func (h *hasher) shortnodeToHash(n *shortNode, force bool) node {
|
|
|
h.tmp.Reset()
|
|
|
if err := rlp.Encode(&h.tmp, n); err != nil {
|
|
|
panic("encode error: " + err.Error())
|
|
|
}
|
|
|
+
|
|
|
if len(h.tmp) < 32 && !force {
|
|
|
- return n, nil // Nodes smaller than 32 bytes are stored inside their parent
|
|
|
+ return n // Nodes smaller than 32 bytes are stored inside their parent
|
|
|
}
|
|
|
- // Larger nodes are replaced by their hash and stored in the database.
|
|
|
- hash, _ := n.cache()
|
|
|
- if hash == nil {
|
|
|
- hash = h.makeHashNode(h.tmp)
|
|
|
+ return h.hashData(h.tmp)
|
|
|
+}
|
|
|
+
|
|
|
+// shortnodeToHash is used to creates a hashNode from a set of hashNodes, (which
|
|
|
+// may contain nil values)
|
|
|
+func (h *hasher) fullnodeToHash(n *fullNode, force bool) node {
|
|
|
+ h.tmp.Reset()
|
|
|
+ // Generate the RLP encoding of the node
|
|
|
+ if err := n.EncodeRLP(&h.tmp); err != nil {
|
|
|
+ panic("encode error: " + err.Error())
|
|
|
}
|
|
|
|
|
|
- if db != nil {
|
|
|
- // We are pooling the trie nodes into an intermediate memory cache
|
|
|
- hash := common.BytesToHash(hash)
|
|
|
-
|
|
|
- db.lock.Lock()
|
|
|
- db.insert(hash, h.tmp, n)
|
|
|
- db.lock.Unlock()
|
|
|
-
|
|
|
- // Track external references from account->storage trie
|
|
|
- if h.onleaf != nil {
|
|
|
- switch n := n.(type) {
|
|
|
- case *shortNode:
|
|
|
- if child, ok := n.Val.(valueNode); ok {
|
|
|
- h.onleaf(child, hash)
|
|
|
- }
|
|
|
- case *fullNode:
|
|
|
- for i := 0; i < 16; i++ {
|
|
|
- if child, ok := n.Children[i].(valueNode); ok {
|
|
|
- h.onleaf(child, hash)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ if len(h.tmp) < 32 && !force {
|
|
|
+ return n // Nodes smaller than 32 bytes are stored inside their parent
|
|
|
}
|
|
|
- return hash, nil
|
|
|
+ return h.hashData(h.tmp)
|
|
|
}
|
|
|
|
|
|
-func (h *hasher) makeHashNode(data []byte) hashNode {
|
|
|
- n := make(hashNode, h.sha.Size())
|
|
|
+// hashData hashes the provided data
|
|
|
+func (h *hasher) hashData(data []byte) hashNode {
|
|
|
+ n := make(hashNode, 32)
|
|
|
h.sha.Reset()
|
|
|
h.sha.Write(data)
|
|
|
h.sha.Read(n)
|
|
|
return n
|
|
|
}
|
|
|
+
|
|
|
+// proofHash is used to construct trie proofs, and returns the 'collapsed'
|
|
|
+// node (for later RLP encoding) aswell as the hashed node -- unless the
|
|
|
+// node is smaller than 32 bytes, in which case it will be returned as is.
|
|
|
+// This method does not do anything on value- or hash-nodes.
|
|
|
+func (h *hasher) proofHash(original node) (collapsed, hashed node) {
|
|
|
+ switch n := original.(type) {
|
|
|
+ case *shortNode:
|
|
|
+ sn, _ := h.hashShortNodeChildren(n)
|
|
|
+ return sn, h.shortnodeToHash(sn, false)
|
|
|
+ case *fullNode:
|
|
|
+ fn, _ := h.hashFullNodeChildren(n)
|
|
|
+ return fn, h.fullnodeToHash(fn, false)
|
|
|
+ default:
|
|
|
+ // Value and hash nodes don't have children so they're left as were
|
|
|
+ return n, n
|
|
|
+ }
|
|
|
+}
|