Просмотр исходного кода

p2p: fix ecies dependency in tests

We forgot to update this reference when moving ecies into the
go-ethereum repo.
Felix Lange 10 лет назад
Родитель
Сommit
34d0e1b2c3

+ 1 - 5
Godeps/Godeps.json

@@ -1,6 +1,6 @@
 {
 	"ImportPath": "github.com/ethereum/go-ethereum",
-	"GoVersion": "go1.4",
+	"GoVersion": "go1.4.1",
 	"Packages": [
 		"./..."
 	],
@@ -57,10 +57,6 @@
 			"ImportPath": "github.com/jackpal/go-nat-pmp",
 			"Rev": "a45aa3d54aef73b504e15eb71bea0e5565b5e6e1"
 		},
-		{
-			"ImportPath": "github.com/obscuren/ecies",
-			"Rev": "d899334bba7bf4a157cab19d8ad836dcb1de0c34"
-		},
 		{
 			"ImportPath": "github.com/obscuren/otto",
 			"Rev": "cf13cc4228c5e5ce0fe27a7aea90bc10091c4f19"

+ 0 - 24
Godeps/_workspace/src/github.com/obscuren/ecies/.gitignore

@@ -1,24 +0,0 @@
-# Compiled Object files, Static and Dynamic libs (Shared Objects)
-*.o
-*.a
-*.so
-
-# Folders
-_obj
-_test
-
-# Architecture specific extensions/prefixes
-*.[568vq]
-[568vq].out
-
-*.cgo1.go
-*.cgo2.c
-_cgo_defun.c
-_cgo_gotypes.go
-_cgo_export.*
-
-_testmain.go
-
-*.exe
-
-*~

+ 0 - 28
Godeps/_workspace/src/github.com/obscuren/ecies/LICENSE

@@ -1,28 +0,0 @@
-Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
-Copyright (c) 2012 The Go Authors. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are
-met:
-
-   * Redistributions of source code must retain the above copyright
-notice, this list of conditions and the following disclaimer.
-   * Redistributions in binary form must reproduce the above
-copyright notice, this list of conditions and the following disclaimer
-in the documentation and/or other materials provided with the
-distribution.
-   * Neither the name of Google Inc. nor the names of its
-contributors may be used to endorse or promote products derived from
-this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

+ 0 - 94
Godeps/_workspace/src/github.com/obscuren/ecies/README

@@ -1,94 +0,0 @@
-# NOTE
-
-This implementation is direct fork of Kylom's implementation. I claim no authorship over this code apart from some minor modifications.
-Please be aware this code **has not yet been reviewed**.
-
-ecies implements the Elliptic Curve Integrated Encryption Scheme.
-
-The package is designed to be compliant with the appropriate NIST
-standards, and therefore doesn't support the full SEC 1 algorithm set.
-
-
-STATUS:
-
-ecies should be ready for use. The ASN.1 support is only complete so
-far as to supported the listed algorithms before.
-
-
-CAVEATS
-
-1. CMAC support is currently not present.
-
-
-SUPPORTED ALGORITHMS
-
-        SYMMETRIC CIPHERS               HASH FUNCTIONS
-             AES128                         SHA-1
-             AES192                        SHA-224
-             AES256                        SHA-256
-                                           SHA-384
-        ELLIPTIC CURVE                     SHA-512
-             P256
-             P384		    KEY DERIVATION FUNCTION
-             P521	       NIST SP 800-65a Concatenation KDF
-
-Curve P224 isn't supported because it does not provide a minimum security
-level of AES128 with HMAC-SHA1. According to NIST SP 800-57, the security
-level of P224 is 112 bits of security. Symmetric ciphers use CTR-mode;
-message tags are computed using HMAC-<HASH> function.
-
-
-CURVE SELECTION
-
-According to NIST SP 800-57, the following curves should be selected:
-
-    +----------------+-------+
-    | SYMMETRIC SIZE | CURVE |
-    +----------------+-------+
-    |     128-bit    |  P256 |
-    +----------------+-------+
-    |     192-bit    |  P384 |
-    +----------------+-------+
-    |     256-bit    |  P521 |
-    +----------------+-------+
-
-
-TODO
-
-1. Look at serialising the parameters with the SEC 1 ASN.1 module.
-2. Validate ASN.1 formats with SEC 1.
-
-
-TEST VECTORS
-
-The only test vectors I've found so far date from 1993, predating AES
-and including only 163-bit curves. Therefore, there are no published
-test vectors to compare to.
-
-
-LICENSE
-
-ecies is released under the same license as the Go source code. See the
-LICENSE file for details.
-
-
-REFERENCES
-
-* SEC (Standard for Efficient Cryptography) 1, version 2.0: Elliptic
-  Curve Cryptography; Certicom, May 2009.
-  http://www.secg.org/sec1-v2.pdf
-* GEC (Guidelines for Efficient Cryptography) 2, version 0.3: Test
-  Vectors for SEC 1; Certicom, September 1999.
-  http://read.pudn.com/downloads168/doc/772358/TestVectorsforSEC%201-gec2.pdf
-* NIST SP 800-56a: Recommendation for Pair-Wise Key Establishment Schemes
-  Using Discrete Logarithm Cryptography. National Institute of Standards
-  and Technology, May 2007.
-  http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
-* Suite B Implementer’s Guide to NIST SP 800-56A. National Security
-  Agency, July 28, 2009.
-  http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
-* NIST SP 800-57: Recommendation for Key Management – Part 1: General
-  (Revision 3). National Institute of Standards and Technology, July
-  2012.
-  http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
-

+ 0 - 556
Godeps/_workspace/src/github.com/obscuren/ecies/asn1.go

@@ -1,556 +0,0 @@
-package ecies
-
-import (
-	"bytes"
-	"crypto"
-	"crypto/elliptic"
-	"crypto/sha1"
-	"crypto/sha256"
-	"crypto/sha512"
-	"encoding/asn1"
-	"encoding/pem"
-	"fmt"
-	"hash"
-	"math/big"
-)
-
-var (
-	secgScheme     = []int{1, 3, 132, 1}
-	shaScheme      = []int{2, 16, 840, 1, 101, 3, 4, 2}
-	ansiX962Scheme = []int{1, 2, 840, 10045}
-	x963Scheme     = []int{1, 2, 840, 63, 0}
-)
-
-var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key")
-
-func doScheme(base, v []int) asn1.ObjectIdentifier {
-	var oidInts asn1.ObjectIdentifier
-	oidInts = append(oidInts, base...)
-	return append(oidInts, v...)
-}
-
-// curve OID code taken from crypto/x509, including
-//	- oidNameCurve*
-//	- namedCurveFromOID
-//	- oidFromNamedCurve
-// RFC 5480, 2.1.1.1. Named Curve
-//
-// secp224r1 OBJECT IDENTIFIER ::= {
-//   iso(1) identified-organization(3) certicom(132) curve(0) 33 }
-//
-// secp256r1 OBJECT IDENTIFIER ::= {
-//   iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
-//   prime(1) 7 }
-//
-// secp384r1 OBJECT IDENTIFIER ::= {
-//   iso(1) identified-organization(3) certicom(132) curve(0) 34 }
-//
-// secp521r1 OBJECT IDENTIFIER ::= {
-//   iso(1) identified-organization(3) certicom(132) curve(0) 35 }
-//
-// NB: secp256r1 is equivalent to prime256v1
-type secgNamedCurve asn1.ObjectIdentifier
-
-var (
-	secgNamedCurveP224 = secgNamedCurve{1, 3, 132, 0, 33}
-	secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7}
-	secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34}
-	secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35}
-	rawCurveP224       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 3}
-	rawCurveP256       = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7}
-	rawCurveP384       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4}
-	rawCurveP521       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5}
-)
-
-func rawCurve(curve elliptic.Curve) []byte {
-	switch curve {
-	case elliptic.P224():
-		return rawCurveP224
-	case elliptic.P256():
-		return rawCurveP256
-	case elliptic.P384():
-		return rawCurveP384
-	case elliptic.P521():
-		return rawCurveP521
-	default:
-		return nil
-	}
-}
-
-func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool {
-	if len(curve) != len(curve2) {
-		return false
-	}
-	for i, _ := range curve {
-		if curve[i] != curve2[i] {
-			return false
-		}
-	}
-	return true
-}
-
-func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve {
-	switch {
-	case curve.Equal(secgNamedCurveP224):
-		return elliptic.P224()
-	case curve.Equal(secgNamedCurveP256):
-		return elliptic.P256()
-	case curve.Equal(secgNamedCurveP384):
-		return elliptic.P384()
-	case curve.Equal(secgNamedCurveP521):
-		return elliptic.P521()
-	}
-	return nil
-}
-
-func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) {
-	switch curve {
-	case elliptic.P224():
-		return secgNamedCurveP224, true
-	case elliptic.P256():
-		return secgNamedCurveP256, true
-	case elliptic.P384():
-		return secgNamedCurveP384, true
-	case elliptic.P521():
-		return secgNamedCurveP521, true
-	}
-
-	return nil, false
-}
-
-// asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC
-// 5280, section 4.1.1.2.
-type asnAlgorithmIdentifier struct {
-	Algorithm  asn1.ObjectIdentifier
-	Parameters asn1.RawValue `asn1:"optional"`
-}
-
-func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i, _ := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-type asnHashFunction asnAlgorithmIdentifier
-
-var (
-	oidSHA1   = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26}
-	oidSHA224 = doScheme(shaScheme, []int{4})
-	oidSHA256 = doScheme(shaScheme, []int{1})
-	oidSHA384 = doScheme(shaScheme, []int{2})
-	oidSHA512 = doScheme(shaScheme, []int{3})
-)
-
-func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash {
-	switch {
-	case oid.Equal(oidSHA1):
-		return sha1.New
-	case oid.Equal(oidSHA224):
-		return sha256.New224
-	case oid.Equal(oidSHA256):
-		return sha256.New
-	case oid.Equal(oidSHA384):
-		return sha512.New384
-	case oid.Equal(oidSHA512):
-		return sha512.New
-	}
-	return nil
-}
-
-func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) {
-	switch hash {
-	case crypto.SHA1:
-		return oidSHA1, true
-	case crypto.SHA224:
-		return oidSHA224, true
-	case crypto.SHA256:
-		return oidSHA256, true
-	case crypto.SHA384:
-		return oidSHA384, true
-	case crypto.SHA512:
-		return oidSHA512, true
-	default:
-		return nil, false
-	}
-}
-
-var (
-	asnAlgoSHA1 = asnHashFunction{
-		Algorithm: oidSHA1,
-	}
-	asnAlgoSHA224 = asnHashFunction{
-		Algorithm: oidSHA224,
-	}
-	asnAlgoSHA256 = asnHashFunction{
-		Algorithm: oidSHA256,
-	}
-	asnAlgoSHA384 = asnHashFunction{
-		Algorithm: oidSHA384,
-	}
-	asnAlgoSHA512 = asnHashFunction{
-		Algorithm: oidSHA512,
-	}
-)
-
-// type ASNasnSubjectPublicKeyInfo struct {
-//
-// }
-//
-
-type asnSubjectPublicKeyInfo struct {
-	Algorithm   asn1.ObjectIdentifier
-	PublicKey   asn1.BitString
-	Supplements ecpksSupplements `asn1:"optional"`
-}
-
-type asnECPKAlgorithms struct {
-	Type asn1.ObjectIdentifier
-}
-
-var idPublicKeyType = doScheme(ansiX962Scheme, []int{2})
-var idEcPublicKey = doScheme(idPublicKeyType, []int{1})
-var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0})
-
-func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) {
-	switch curve {
-	case elliptic.P224(), elliptic.P256(), elliptic.P384(), elliptic.P521():
-		raw := rawCurve(curve)
-		return asn1.RawValue{
-			Tag:       30,
-			Bytes:     raw[2:],
-			FullBytes: raw,
-		}, true
-	default:
-		return rv, false
-	}
-}
-
-func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) {
-	raw, ok := curveToRaw(curve)
-	if !ok {
-		return
-	} else {
-		return asnAlgorithmIdentifier{Algorithm: idEcPublicKey,
-			Parameters: raw}, true
-	}
-}
-
-type asnECPrivKeyVer int
-
-var asnECPrivKeyVer1 asnECPrivKeyVer = 1
-
-type asnPrivateKey struct {
-	Version asnECPrivKeyVer
-	Private []byte
-	Curve   secgNamedCurve `asn1:"optional"`
-	Public  asn1.BitString
-}
-
-var asnECDH = doScheme(secgScheme, []int{12})
-
-type asnECDHAlgorithm asnAlgorithmIdentifier
-
-var (
-	dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(x963Scheme, []int{2}),
-	}
-	dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 1}),
-	}
-	dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 2}),
-	}
-	dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 0}),
-	}
-	dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 3}),
-	}
-)
-
-func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i, _ := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-// asnNISTConcatenation is the only supported KDF at this time.
-type asnKeyDerivationFunction asnAlgorithmIdentifier
-
-var asnNISTConcatenationKDF = asnKeyDerivationFunction{
-	Algorithm: doScheme(secgScheme, []int{17, 1}),
-}
-
-func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i, _ := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-var eciesRecommendedParameters = doScheme(secgScheme, []int{7})
-var eciesSpecifiedParameters = doScheme(secgScheme, []int{8})
-
-type asnECIESParameters struct {
-	KDF asnKeyDerivationFunction     `asn1:"optional"`
-	Sym asnSymmetricEncryption       `asn1:"optional"`
-	MAC asnMessageAuthenticationCode `asn1:"optional"`
-}
-
-type asnSymmetricEncryption asnAlgorithmIdentifier
-
-var (
-	aes128CTRinECIES = asnSymmetricEncryption{
-		Algorithm: doScheme(secgScheme, []int{21, 0}),
-	}
-	aes192CTRinECIES = asnSymmetricEncryption{
-		Algorithm: doScheme(secgScheme, []int{21, 1}),
-	}
-	aes256CTRinECIES = asnSymmetricEncryption{
-		Algorithm: doScheme(secgScheme, []int{21, 2}),
-	}
-)
-
-func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i, _ := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-type asnMessageAuthenticationCode asnAlgorithmIdentifier
-
-var (
-	hmacFull = asnMessageAuthenticationCode{
-		Algorithm: doScheme(secgScheme, []int{22}),
-	}
-)
-
-func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i, _ := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-type ecpksSupplements struct {
-	ECDomain      secgNamedCurve
-	ECCAlgorithms eccAlgorithmSet
-}
-
-type eccAlgorithmSet struct {
-	ECDH  asnECDHAlgorithm   `asn1:"optional"`
-	ECIES asnECIESParameters `asn1:"optional"`
-}
-
-func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) {
-	subj.Algorithm = idEcPublicKeySupplemented
-	curve, ok := oidFromNamedCurve(pub.Curve)
-	if !ok {
-		err = ErrInvalidPublicKey
-		return
-	}
-	subj.Supplements.ECDomain = curve
-	if pub.Params != nil {
-		subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params)
-		subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params)
-	}
-	pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
-	subj.PublicKey = asn1.BitString{
-		BitLength: len(pubkey) * 8,
-		Bytes:     pubkey,
-	}
-	return
-}
-
-// Encode a public key to DER format.
-func MarshalPublic(pub *PublicKey) ([]byte, error) {
-	subj, err := marshalSubjectPublicKeyInfo(pub)
-	if err != nil {
-		return nil, err
-	}
-	return asn1.Marshal(subj)
-}
-
-// Decode a DER-encoded public key.
-func UnmarshalPublic(in []byte) (pub *PublicKey, err error) {
-	var subj asnSubjectPublicKeyInfo
-
-	if _, err = asn1.Unmarshal(in, &subj); err != nil {
-		return
-	}
-	if !subj.Algorithm.Equal(idEcPublicKeySupplemented) {
-		err = ErrInvalidPublicKey
-		return
-	}
-	pub = new(PublicKey)
-	pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain)
-	x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes)
-	if x == nil {
-		err = ErrInvalidPublicKey
-		return
-	}
-	pub.X = x
-	pub.Y = y
-	pub.Params = new(ECIESParams)
-	asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params)
-	asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params)
-	if pub.Params == nil {
-		if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil {
-			err = ErrInvalidPublicKey
-		}
-	}
-	return
-}
-
-func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) {
-	ecprv.Version = asnECPrivKeyVer1
-	ecprv.Private = prv.D.Bytes()
-
-	var ok bool
-	ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve)
-	if !ok {
-		err = ErrInvalidPrivateKey
-		return
-	}
-
-	var pub []byte
-	if pub, err = MarshalPublic(&prv.PublicKey); err != nil {
-		return
-	} else {
-		ecprv.Public = asn1.BitString{
-			BitLength: len(pub) * 8,
-			Bytes:     pub,
-		}
-	}
-	return
-}
-
-// Encode a private key to DER format.
-func MarshalPrivate(prv *PrivateKey) ([]byte, error) {
-	ecprv, err := marshalPrivateKey(prv)
-	if err != nil {
-		return nil, err
-	}
-	return asn1.Marshal(ecprv)
-}
-
-// Decode a private key from a DER-encoded format.
-func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) {
-	var ecprv asnPrivateKey
-
-	if _, err = asn1.Unmarshal(in, &ecprv); err != nil {
-		return
-	} else if ecprv.Version != asnECPrivKeyVer1 {
-		err = ErrInvalidPrivateKey
-		return
-	}
-
-	privateCurve := namedCurveFromOID(ecprv.Curve)
-	if privateCurve == nil {
-		err = ErrInvalidPrivateKey
-		return
-	}
-
-	prv = new(PrivateKey)
-	prv.D = new(big.Int).SetBytes(ecprv.Private)
-
-	if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil {
-		return nil, err
-	} else {
-		prv.PublicKey = *pub
-	}
-
-	return
-}
-
-// Export a public key to PEM format.
-func ExportPublicPEM(pub *PublicKey) (out []byte, err error) {
-	der, err := MarshalPublic(pub)
-	if err != nil {
-		return
-	}
-
-	var block pem.Block
-	block.Type = "ELLIPTIC CURVE PUBLIC KEY"
-	block.Bytes = der
-
-	buf := new(bytes.Buffer)
-	err = pem.Encode(buf, &block)
-	if err != nil {
-		return
-	} else {
-		out = buf.Bytes()
-	}
-	return
-}
-
-// Export a private key to PEM format.
-func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) {
-	der, err := MarshalPrivate(prv)
-	if err != nil {
-		return
-	}
-
-	var block pem.Block
-	block.Type = "ELLIPTIC CURVE PRIVATE KEY"
-	block.Bytes = der
-
-	buf := new(bytes.Buffer)
-	err = pem.Encode(buf, &block)
-	if err != nil {
-		return
-	} else {
-		out = buf.Bytes()
-	}
-	return
-}
-
-// Import a PEM-encoded public key.
-func ImportPublicPEM(in []byte) (pub *PublicKey, err error) {
-	p, _ := pem.Decode(in)
-	if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" {
-		return nil, ErrInvalidPublicKey
-	}
-
-	pub, err = UnmarshalPublic(p.Bytes)
-	return
-}
-
-// Import a PEM-encoded private key.
-func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) {
-	p, _ := pem.Decode(in)
-	if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" {
-		return nil, ErrInvalidPrivateKey
-	}
-
-	prv, err = UnmarshalPrivate(p.Bytes)
-	return
-}

+ 0 - 326
Godeps/_workspace/src/github.com/obscuren/ecies/ecies.go

@@ -1,326 +0,0 @@
-package ecies
-
-import (
-	"crypto/cipher"
-	"crypto/ecdsa"
-	"crypto/elliptic"
-	"crypto/hmac"
-	"crypto/subtle"
-	"fmt"
-	"hash"
-	"io"
-	"math/big"
-)
-
-var (
-	ErrImport           = fmt.Errorf("ecies: failed to import key")
-	ErrInvalidCurve     = fmt.Errorf("ecies: invalid elliptic curve")
-	ErrInvalidParams    = fmt.Errorf("ecies: invalid ECIES parameters")
-	ErrInvalidPublicKey = fmt.Errorf("ecies: invalid public key")
-	ErrSharedKeyTooBig  = fmt.Errorf("ecies: shared key is too big")
-)
-
-// PublicKey is a representation of an elliptic curve public key.
-type PublicKey struct {
-	X *big.Int
-	Y *big.Int
-	elliptic.Curve
-	Params *ECIESParams
-}
-
-// Export an ECIES public key as an ECDSA public key.
-func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey {
-	return &ecdsa.PublicKey{pub.Curve, pub.X, pub.Y}
-}
-
-// Import an ECDSA public key as an ECIES public key.
-func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey {
-	return &PublicKey{
-		X:      pub.X,
-		Y:      pub.Y,
-		Curve:  pub.Curve,
-		Params: ParamsFromCurve(pub.Curve),
-	}
-}
-
-// PrivateKey is a representation of an elliptic curve private key.
-type PrivateKey struct {
-	PublicKey
-	D *big.Int
-}
-
-// Export an ECIES private key as an ECDSA private key.
-func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey {
-	pub := &prv.PublicKey
-	pubECDSA := pub.ExportECDSA()
-	return &ecdsa.PrivateKey{*pubECDSA, prv.D}
-}
-
-// Import an ECDSA private key as an ECIES private key.
-func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey {
-	pub := ImportECDSAPublic(&prv.PublicKey)
-	return &PrivateKey{*pub, prv.D}
-}
-
-// Generate an elliptic curve public / private keypair. If params is nil,
-// the recommended default paramters for the key will be chosen.
-func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) {
-	pb, x, y, err := elliptic.GenerateKey(curve, rand)
-	if err != nil {
-		return
-	}
-	prv = new(PrivateKey)
-	prv.PublicKey.X = x
-	prv.PublicKey.Y = y
-	prv.PublicKey.Curve = curve
-	prv.D = new(big.Int).SetBytes(pb)
-	if params == nil {
-		params = ParamsFromCurve(curve)
-	}
-	prv.PublicKey.Params = params
-	return
-}
-
-// MaxSharedKeyLength returns the maximum length of the shared key the
-// public key can produce.
-func MaxSharedKeyLength(pub *PublicKey) int {
-	return (pub.Curve.Params().BitSize + 7) / 8
-}
-
-// ECDH key agreement method used to establish secret keys for encryption.
-func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) {
-	if prv.PublicKey.Curve != pub.Curve {
-		err = ErrInvalidCurve
-		return
-	}
-	x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes())
-	if x == nil || (x.BitLen()+7)/8 < (skLen+macLen) {
-		err = ErrSharedKeyTooBig
-		return
-	}
-	sk = x.Bytes()[:skLen+macLen]
-	return
-}
-
-var (
-	ErrKeyDataTooLong = fmt.Errorf("ecies: can't supply requested key data")
-	ErrSharedTooLong  = fmt.Errorf("ecies: shared secret is too long")
-	ErrInvalidMessage = fmt.Errorf("ecies: invalid message")
-)
-
-var (
-	big2To32   = new(big.Int).Exp(big.NewInt(2), big.NewInt(32), nil)
-	big2To32M1 = new(big.Int).Sub(big2To32, big.NewInt(1))
-)
-
-func incCounter(ctr []byte) {
-	if ctr[3]++; ctr[3] != 0 {
-		return
-	} else if ctr[2]++; ctr[2] != 0 {
-		return
-	} else if ctr[1]++; ctr[1] != 0 {
-		return
-	} else if ctr[0]++; ctr[0] != 0 {
-		return
-	}
-	return
-}
-
-// NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
-func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) (k []byte, err error) {
-	if s1 == nil {
-		s1 = make([]byte, 0)
-	}
-
-	reps := ((kdLen + 7) * 8) / (hash.BlockSize() * 8)
-	if big.NewInt(int64(reps)).Cmp(big2To32M1) > 0 {
-		fmt.Println(big2To32M1)
-		return nil, ErrKeyDataTooLong
-	}
-
-	counter := []byte{0, 0, 0, 1}
-	k = make([]byte, 0)
-
-	for i := 0; i <= reps; i++ {
-		hash.Write(counter)
-		hash.Write(z)
-		hash.Write(s1)
-		k = append(k, hash.Sum(nil)...)
-		hash.Reset()
-		incCounter(counter)
-	}
-
-	k = k[:kdLen]
-	return
-}
-
-// messageTag computes the MAC of a message (called the tag) as per
-// SEC 1, 3.5.
-func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte {
-	if shared == nil {
-		shared = make([]byte, 0)
-	}
-	mac := hmac.New(hash, km)
-	mac.Write(msg)
-	tag := mac.Sum(nil)
-	return tag
-}
-
-// Generate an initialisation vector for CTR mode.
-func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) {
-	iv = make([]byte, params.BlockSize)
-	_, err = io.ReadFull(rand, iv)
-	return
-}
-
-// symEncrypt carries out CTR encryption using the block cipher specified in the
-// parameters.
-func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) {
-	c, err := params.Cipher(key)
-	if err != nil {
-		return
-	}
-
-	iv, err := generateIV(params, rand)
-	if err != nil {
-		return
-	}
-	ctr := cipher.NewCTR(c, iv)
-
-	ct = make([]byte, len(m)+params.BlockSize)
-	copy(ct, iv)
-	ctr.XORKeyStream(ct[params.BlockSize:], m)
-	return
-}
-
-// symDecrypt carries out CTR decryption using the block cipher specified in
-// the parameters
-func symDecrypt(rand io.Reader, params *ECIESParams, key, ct []byte) (m []byte, err error) {
-	c, err := params.Cipher(key)
-	if err != nil {
-		return
-	}
-
-	ctr := cipher.NewCTR(c, ct[:params.BlockSize])
-
-	m = make([]byte, len(ct)-params.BlockSize)
-	ctr.XORKeyStream(m, ct[params.BlockSize:])
-	return
-}
-
-// Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1. If
-// the shared information parameters aren't being used, they should be
-// nil.
-func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) {
-	params := pub.Params
-	if params == nil {
-		if params = ParamsFromCurve(pub.Curve); params == nil {
-			err = ErrUnsupportedECIESParameters
-			return
-		}
-	}
-	R, err := GenerateKey(rand, pub.Curve, params)
-	if err != nil {
-		return
-	}
-
-	hash := params.Hash()
-	z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen)
-	if err != nil {
-		return
-	}
-	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
-	if err != nil {
-		return
-	}
-	Ke := K[:params.KeyLen]
-	Km := K[params.KeyLen:]
-	hash.Write(Km)
-	Km = hash.Sum(nil)
-	hash.Reset()
-
-	em, err := symEncrypt(rand, params, Ke, m)
-	if err != nil || len(em) <= params.BlockSize {
-		return
-	}
-
-	d := messageTag(params.Hash, Km, em, s2)
-
-	Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y)
-	ct = make([]byte, len(Rb)+len(em)+len(d))
-	copy(ct, Rb)
-	copy(ct[len(Rb):], em)
-	copy(ct[len(Rb)+len(em):], d)
-	return
-}
-
-// Decrypt decrypts an ECIES ciphertext.
-func (prv *PrivateKey) Decrypt(rand io.Reader, c, s1, s2 []byte) (m []byte, err error) {
-	if c == nil || len(c) == 0 {
-		err = ErrInvalidMessage
-		return
-	}
-	params := prv.PublicKey.Params
-	if params == nil {
-		if params = ParamsFromCurve(prv.PublicKey.Curve); params == nil {
-			err = ErrUnsupportedECIESParameters
-			return
-		}
-	}
-	hash := params.Hash()
-
-	var (
-		rLen   int
-		hLen   int = hash.Size()
-		mStart int
-		mEnd   int
-	)
-
-	switch c[0] {
-	case 2, 3, 4:
-		rLen = ((prv.PublicKey.Curve.Params().BitSize + 7) / 4)
-		if len(c) < (rLen + hLen + 1) {
-			err = ErrInvalidMessage
-			return
-		}
-	default:
-		err = ErrInvalidPublicKey
-		return
-	}
-
-	mStart = rLen
-	mEnd = len(c) - hLen
-
-	R := new(PublicKey)
-	R.Curve = prv.PublicKey.Curve
-	R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen])
-	if R.X == nil {
-		err = ErrInvalidPublicKey
-		return
-	}
-
-	z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen)
-	if err != nil {
-		return
-	}
-
-	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
-	if err != nil {
-		return
-	}
-
-	Ke := K[:params.KeyLen]
-	Km := K[params.KeyLen:]
-	hash.Write(Km)
-	Km = hash.Sum(nil)
-	hash.Reset()
-
-	d := messageTag(params.Hash, Km, c[mStart:mEnd], s2)
-	if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 {
-		err = ErrInvalidMessage
-		return
-	}
-
-	m, err = symDecrypt(rand, params, Ke, c[mStart:mEnd])
-	return
-}

+ 0 - 489
Godeps/_workspace/src/github.com/obscuren/ecies/ecies_test.go

@@ -1,489 +0,0 @@
-package ecies
-
-import (
-	"bytes"
-	"crypto/elliptic"
-	"crypto/rand"
-	"crypto/sha256"
-	"flag"
-	"fmt"
-	"io/ioutil"
-	"testing"
-)
-
-var dumpEnc bool
-
-func init() {
-	flDump := flag.Bool("dump", false, "write encrypted test message to file")
-	flag.Parse()
-	dumpEnc = *flDump
-}
-
-// Ensure the KDF generates appropriately sized keys.
-func TestKDF(t *testing.T) {
-	msg := []byte("Hello, world")
-	h := sha256.New()
-
-	k, err := concatKDF(h, msg, nil, 64)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-	if len(k) != 64 {
-		fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
-			len(k))
-		t.FailNow()
-	}
-}
-
-var skLen int
-var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
-
-// cmpParams compares a set of ECIES parameters. We assume, as per the
-// docs, that AES is the only supported symmetric encryption algorithm.
-func cmpParams(p1, p2 *ECIESParams) bool {
-	if p1.hashAlgo != p2.hashAlgo {
-		return false
-	} else if p1.KeyLen != p2.KeyLen {
-		return false
-	} else if p1.BlockSize != p2.BlockSize {
-		return false
-	}
-	return true
-}
-
-// cmpPublic returns true if the two public keys represent the same pojnt.
-func cmpPublic(pub1, pub2 PublicKey) bool {
-	if pub1.X == nil || pub1.Y == nil {
-		fmt.Println(ErrInvalidPublicKey.Error())
-		return false
-	}
-	if pub2.X == nil || pub2.Y == nil {
-		fmt.Println(ErrInvalidPublicKey.Error())
-		return false
-	}
-	pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
-	pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
-
-	return bytes.Equal(pub1Out, pub2Out)
-}
-
-// cmpPrivate returns true if the two private keys are the same.
-func cmpPrivate(prv1, prv2 *PrivateKey) bool {
-	if prv1 == nil || prv1.D == nil {
-		return false
-	} else if prv2 == nil || prv2.D == nil {
-		return false
-	} else if prv1.D.Cmp(prv2.D) != 0 {
-		return false
-	} else {
-		return cmpPublic(prv1.PublicKey, prv2.PublicKey)
-	}
-}
-
-// Validate the ECDH component.
-func TestSharedKey(t *testing.T) {
-	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-	skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2
-
-	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if !bytes.Equal(sk1, sk2) {
-		fmt.Println(ErrBadSharedKeys.Error())
-		t.FailNow()
-	}
-}
-
-// Verify that the key generation code fails when too much key data is
-// requested.
-func TestTooBigSharedKey(t *testing.T) {
-	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	_, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2)
-	if err != ErrSharedKeyTooBig {
-		fmt.Println("ecdh: shared key should be too large for curve")
-		t.FailNow()
-	}
-
-	_, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2)
-	if err != ErrSharedKeyTooBig {
-		fmt.Println("ecdh: shared key should be too large for curve")
-		t.FailNow()
-	}
-}
-
-// Ensure a public key can be successfully marshalled and unmarshalled, and
-// that the decoded key is the same as the original.
-func TestMarshalPublic(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := MarshalPublic(&prv.PublicKey)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	pub, err := UnmarshalPublic(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if !cmpPublic(prv.PublicKey, *pub) {
-		fmt.Println("ecies: failed to unmarshal public key")
-		t.FailNow()
-	}
-}
-
-// Ensure that a private key can be encoded into DER format, and that
-// the resulting key is properly parsed back into a public key.
-func TestMarshalPrivate(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := MarshalPrivate(prv)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if dumpEnc {
-		ioutil.WriteFile("test.out", out, 0644)
-	}
-
-	prv2, err := UnmarshalPrivate(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if !cmpPrivate(prv, prv2) {
-		fmt.Println("ecdh: private key import failed")
-		t.FailNow()
-	}
-}
-
-// Ensure that a private key can be successfully encoded to PEM format, and
-// the resulting key is properly parsed back in.
-func TestPrivatePEM(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := ExportPrivatePEM(prv)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if dumpEnc {
-		ioutil.WriteFile("test.key", out, 0644)
-	}
-
-	prv2, err := ImportPrivatePEM(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	} else if !cmpPrivate(prv, prv2) {
-		fmt.Println("ecdh: import from PEM failed")
-		t.FailNow()
-	}
-}
-
-// Ensure that a public key can be successfully encoded to PEM format, and
-// the resulting key is properly parsed back in.
-func TestPublicPEM(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := ExportPublicPEM(&prv.PublicKey)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if dumpEnc {
-		ioutil.WriteFile("test.pem", out, 0644)
-	}
-
-	pub2, err := ImportPublicPEM(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	} else if !cmpPublic(prv.PublicKey, *pub2) {
-		fmt.Println("ecdh: import from PEM failed")
-		t.FailNow()
-	}
-}
-
-// Benchmark the generation of P256 keys.
-func BenchmarkGenerateKeyP256(b *testing.B) {
-	for i := 0; i < b.N; i++ {
-		if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
-			fmt.Println(err.Error())
-			b.FailNow()
-		}
-	}
-}
-
-// Benchmark the generation of P256 shared keys.
-func BenchmarkGenSharedKeyP256(b *testing.B) {
-	prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		b.FailNow()
-	}
-
-	for i := 0; i < b.N; i++ {
-		_, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen)
-		if err != nil {
-			fmt.Println(err.Error())
-			b.FailNow()
-		}
-	}
-}
-
-// Verify that an encrypted message can be successfully decrypted.
-func TestEncryptDecrypt(t *testing.T) {
-	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	message := []byte("Hello, world.")
-	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if !bytes.Equal(pt, message) {
-		fmt.Println("ecies: plaintext doesn't match message")
-		t.FailNow()
-	}
-
-	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
-	if err == nil {
-		fmt.Println("ecies: encryption should not have succeeded")
-		t.FailNow()
-	}
-}
-
-// TestMarshalEncryption validates the encode/decode produces a valid
-// ECIES encryption key.
-func TestMarshalEncryption(t *testing.T) {
-	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := MarshalPrivate(prv1)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	prv2, err := UnmarshalPrivate(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	message := []byte("Hello, world.")
-	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if !bytes.Equal(pt, message) {
-		fmt.Println("ecies: plaintext doesn't match message")
-		t.FailNow()
-	}
-
-	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-}
-
-type testCase struct {
-	Curve    elliptic.Curve
-	Name     string
-	Expected bool
-}
-
-var testCases = []testCase{
-	testCase{
-		Curve:    elliptic.P224(),
-		Name:     "P224",
-		Expected: false,
-	},
-	testCase{
-		Curve:    elliptic.P256(),
-		Name:     "P256",
-		Expected: true,
-	},
-	testCase{
-		Curve:    elliptic.P384(),
-		Name:     "P384",
-		Expected: true,
-	},
-	testCase{
-		Curve:    elliptic.P521(),
-		Name:     "P521",
-		Expected: true,
-	},
-}
-
-// Test parameter selection for each curve, and that P224 fails automatic
-// parameter selection (see README for a discussion of P224). Ensures that
-// selecting a set of parameters automatically for the given curve works.
-func TestParamSelection(t *testing.T) {
-	for _, c := range testCases {
-		testParamSelection(t, c)
-	}
-}
-
-func testParamSelection(t *testing.T, c testCase) {
-	params := ParamsFromCurve(c.Curve)
-	if params == nil && c.Expected {
-		fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
-		t.FailNow()
-	} else if params != nil && !c.Expected {
-		fmt.Printf("ecies: parameters should be invalid (%s)\n",
-			c.Name)
-		t.FailNow()
-	}
-
-	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
-		t.FailNow()
-	}
-
-	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
-		t.FailNow()
-	}
-
-	message := []byte("Hello, world.")
-	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
-	if err != nil {
-		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
-		t.FailNow()
-	}
-
-	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
-	if err != nil {
-		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
-		t.FailNow()
-	}
-
-	if !bytes.Equal(pt, message) {
-		fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
-			c.Name)
-		t.FailNow()
-	}
-
-	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
-	if err == nil {
-		fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
-			c.Name)
-		t.FailNow()
-	}
-
-}
-
-// Ensure that the basic public key validation in the decryption operation
-// works.
-func TestBasicKeyValidation(t *testing.T) {
-	badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
-
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	message := []byte("Hello, world.")
-	ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	for _, b := range badBytes {
-		ct[0] = b
-		_, err := prv.Decrypt(rand.Reader, ct, nil, nil)
-		if err != ErrInvalidPublicKey {
-			fmt.Println("ecies: validated an invalid key")
-			t.FailNow()
-		}
-	}
-}

+ 0 - 187
Godeps/_workspace/src/github.com/obscuren/ecies/params.go

@@ -1,187 +0,0 @@
-package ecies
-
-// This file contains parameters for ECIES encryption, specifying the
-// symmetric encryption and HMAC parameters.
-
-import (
-	"crypto"
-	"crypto/aes"
-	"crypto/cipher"
-	"crypto/elliptic"
-	"crypto/sha256"
-	"crypto/sha512"
-	"fmt"
-	"hash"
-)
-
-// The default curve for this package is the NIST P256 curve, which
-// provides security equivalent to AES-128.
-var DefaultCurve = elliptic.P256()
-
-var (
-	ErrUnsupportedECDHAlgorithm   = fmt.Errorf("ecies: unsupported ECDH algorithm")
-	ErrUnsupportedECIESParameters = fmt.Errorf("ecies: unsupported ECIES parameters")
-)
-
-type ECIESParams struct {
-	Hash      func() hash.Hash // hash function
-	hashAlgo  crypto.Hash
-	Cipher    func([]byte) (cipher.Block, error) // symmetric cipher
-	BlockSize int                                // block size of symmetric cipher
-	KeyLen    int                                // length of symmetric key
-}
-
-// Standard ECIES parameters:
-// * ECIES using AES128 and HMAC-SHA-256-16
-// * ECIES using AES256 and HMAC-SHA-256-32
-// * ECIES using AES256 and HMAC-SHA-384-48
-// * ECIES using AES256 and HMAC-SHA-512-64
-var (
-	ECIES_AES128_SHA256 *ECIESParams
-	ECIES_AES256_SHA256 *ECIESParams
-	ECIES_AES256_SHA384 *ECIESParams
-	ECIES_AES256_SHA512 *ECIESParams
-)
-
-func init() {
-	ECIES_AES128_SHA256 = &ECIESParams{
-		Hash:      sha256.New,
-		hashAlgo:  crypto.SHA256,
-		Cipher:    aes.NewCipher,
-		BlockSize: aes.BlockSize,
-		KeyLen:    16,
-	}
-
-	ECIES_AES256_SHA256 = &ECIESParams{
-		Hash:      sha256.New,
-		hashAlgo:  crypto.SHA256,
-		Cipher:    aes.NewCipher,
-		BlockSize: aes.BlockSize,
-		KeyLen:    32,
-	}
-
-	ECIES_AES256_SHA384 = &ECIESParams{
-		Hash:      sha512.New384,
-		hashAlgo:  crypto.SHA384,
-		Cipher:    aes.NewCipher,
-		BlockSize: aes.BlockSize,
-		KeyLen:    32,
-	}
-
-	ECIES_AES256_SHA512 = &ECIESParams{
-		Hash:      sha512.New,
-		hashAlgo:  crypto.SHA512,
-		Cipher:    aes.NewCipher,
-		BlockSize: aes.BlockSize,
-		KeyLen:    32,
-	}
-}
-
-var paramsFromCurve = map[elliptic.Curve]*ECIESParams{
-	elliptic.P256(): ECIES_AES128_SHA256,
-	elliptic.P384(): ECIES_AES256_SHA384,
-	elliptic.P521(): ECIES_AES256_SHA512,
-}
-
-func AddParamsForCurve(curve elliptic.Curve, params *ECIESParams) {
-	paramsFromCurve[curve] = params
-}
-
-// ParamsFromCurve selects parameters optimal for the selected elliptic curve.
-// Only the curves P256, P384, and P512 are supported.
-func ParamsFromCurve(curve elliptic.Curve) (params *ECIESParams) {
-	return paramsFromCurve[curve]
-
-	/*
-		switch curve {
-		case elliptic.P256():
-			return ECIES_AES128_SHA256
-		case elliptic.P384():
-			return ECIES_AES256_SHA384
-		case elliptic.P521():
-			return ECIES_AES256_SHA512
-		default:
-			return nil
-		}
-	*/
-}
-
-// ASN.1 encode the ECIES parameters relevant to the encryption operations.
-func paramsToASNECIES(params *ECIESParams) (asnParams asnECIESParameters) {
-	if nil == params {
-		return
-	}
-	asnParams.KDF = asnNISTConcatenationKDF
-	asnParams.MAC = hmacFull
-	switch params.KeyLen {
-	case 16:
-		asnParams.Sym = aes128CTRinECIES
-	case 24:
-		asnParams.Sym = aes192CTRinECIES
-	case 32:
-		asnParams.Sym = aes256CTRinECIES
-	}
-	return
-}
-
-// ASN.1 encode the ECIES parameters relevant to ECDH.
-func paramsToASNECDH(params *ECIESParams) (algo asnECDHAlgorithm) {
-	switch params.hashAlgo {
-	case crypto.SHA224:
-		algo = dhSinglePass_stdDH_sha224kdf
-	case crypto.SHA256:
-		algo = dhSinglePass_stdDH_sha256kdf
-	case crypto.SHA384:
-		algo = dhSinglePass_stdDH_sha384kdf
-	case crypto.SHA512:
-		algo = dhSinglePass_stdDH_sha512kdf
-	}
-	return
-}
-
-// ASN.1 decode the ECIES parameters relevant to the encryption stage.
-func asnECIEStoParams(asnParams asnECIESParameters, params *ECIESParams) {
-	if !asnParams.KDF.Cmp(asnNISTConcatenationKDF) {
-		params = nil
-		return
-	} else if !asnParams.MAC.Cmp(hmacFull) {
-		params = nil
-		return
-	}
-
-	switch {
-	case asnParams.Sym.Cmp(aes128CTRinECIES):
-		params.KeyLen = 16
-		params.BlockSize = 16
-		params.Cipher = aes.NewCipher
-	case asnParams.Sym.Cmp(aes192CTRinECIES):
-		params.KeyLen = 24
-		params.BlockSize = 16
-		params.Cipher = aes.NewCipher
-	case asnParams.Sym.Cmp(aes256CTRinECIES):
-		params.KeyLen = 32
-		params.BlockSize = 16
-		params.Cipher = aes.NewCipher
-	default:
-		params = nil
-	}
-}
-
-// ASN.1 decode the ECIES parameters relevant to ECDH.
-func asnECDHtoParams(asnParams asnECDHAlgorithm, params *ECIESParams) {
-	if asnParams.Cmp(dhSinglePass_stdDH_sha224kdf) {
-		params.hashAlgo = crypto.SHA224
-		params.Hash = sha256.New224
-	} else if asnParams.Cmp(dhSinglePass_stdDH_sha256kdf) {
-		params.hashAlgo = crypto.SHA256
-		params.Hash = sha256.New
-	} else if asnParams.Cmp(dhSinglePass_stdDH_sha384kdf) {
-		params.hashAlgo = crypto.SHA384
-		params.Hash = sha512.New384
-	} else if asnParams.Cmp(dhSinglePass_stdDH_sha512kdf) {
-		params.hashAlgo = crypto.SHA512
-		params.Hash = sha512.New
-	} else {
-		params = nil
-	}
-}

+ 1 - 1
p2p/crypto_test.go

@@ -8,7 +8,7 @@ import (
 	"testing"
 
 	"github.com/ethereum/go-ethereum/crypto"
-	"github.com/obscuren/ecies"
+	"github.com/ethereum/go-ethereum/crypto/ecies"
 )
 
 func TestPublicKeyEncoding(t *testing.T) {