|
|
@@ -1,297 +0,0 @@
|
|
|
-// Copyright 2014 The Go Authors. All rights reserved.
|
|
|
-// Use of this source code is governed by a BSD-style
|
|
|
-// license that can be found in the LICENSE file.
|
|
|
-
|
|
|
-package sha3
|
|
|
-
|
|
|
-// Tests include all the ShortMsgKATs provided by the Keccak team at
|
|
|
-// https://github.com/gvanas/KeccakCodePackage
|
|
|
-//
|
|
|
-// They only include the zero-bit case of the bitwise testvectors
|
|
|
-// published by NIST in the draft of FIPS-202.
|
|
|
-
|
|
|
-import (
|
|
|
- "bytes"
|
|
|
- "compress/flate"
|
|
|
- "encoding/hex"
|
|
|
- "encoding/json"
|
|
|
- "hash"
|
|
|
- "os"
|
|
|
- "strings"
|
|
|
- "testing"
|
|
|
-)
|
|
|
-
|
|
|
-const (
|
|
|
- testString = "brekeccakkeccak koax koax"
|
|
|
- katFilename = "testdata/keccakKats.json.deflate"
|
|
|
-)
|
|
|
-
|
|
|
-// Internal-use instances of SHAKE used to test against KATs.
|
|
|
-func newHashShake128() hash.Hash {
|
|
|
- return &state{rate: 168, dsbyte: 0x1f, outputLen: 512}
|
|
|
-}
|
|
|
-func newHashShake256() hash.Hash {
|
|
|
- return &state{rate: 136, dsbyte: 0x1f, outputLen: 512}
|
|
|
-}
|
|
|
-
|
|
|
-// testDigests contains functions returning hash.Hash instances
|
|
|
-// with output-length equal to the KAT length for both SHA-3 and
|
|
|
-// SHAKE instances.
|
|
|
-var testDigests = map[string]func() hash.Hash{
|
|
|
- "SHA3-224": New224,
|
|
|
- "SHA3-256": New256,
|
|
|
- "SHA3-384": New384,
|
|
|
- "SHA3-512": New512,
|
|
|
- "SHAKE128": newHashShake128,
|
|
|
- "SHAKE256": newHashShake256,
|
|
|
-}
|
|
|
-
|
|
|
-// testShakes contains functions that return ShakeHash instances for
|
|
|
-// testing the ShakeHash-specific interface.
|
|
|
-var testShakes = map[string]func() ShakeHash{
|
|
|
- "SHAKE128": NewShake128,
|
|
|
- "SHAKE256": NewShake256,
|
|
|
-}
|
|
|
-
|
|
|
-// structs used to marshal JSON test-cases.
|
|
|
-type KeccakKats struct {
|
|
|
- Kats map[string][]struct {
|
|
|
- Digest string `json:"digest"`
|
|
|
- Length int64 `json:"length"`
|
|
|
- Message string `json:"message"`
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-func testUnalignedAndGeneric(t *testing.T, testf func(impl string)) {
|
|
|
- xorInOrig, copyOutOrig := xorIn, copyOut
|
|
|
- xorIn, copyOut = xorInGeneric, copyOutGeneric
|
|
|
- testf("generic")
|
|
|
- if xorImplementationUnaligned != "generic" {
|
|
|
- xorIn, copyOut = xorInUnaligned, copyOutUnaligned
|
|
|
- testf("unaligned")
|
|
|
- }
|
|
|
- xorIn, copyOut = xorInOrig, copyOutOrig
|
|
|
-}
|
|
|
-
|
|
|
-// TestKeccakKats tests the SHA-3 and Shake implementations against all the
|
|
|
-// ShortMsgKATs from https://github.com/gvanas/KeccakCodePackage
|
|
|
-// (The testvectors are stored in keccakKats.json.deflate due to their length.)
|
|
|
-func TestKeccakKats(t *testing.T) {
|
|
|
- testUnalignedAndGeneric(t, func(impl string) {
|
|
|
- // Read the KATs.
|
|
|
- deflated, err := os.Open(katFilename)
|
|
|
- if err != nil {
|
|
|
- t.Errorf("error opening %s: %s", katFilename, err)
|
|
|
- }
|
|
|
- file := flate.NewReader(deflated)
|
|
|
- dec := json.NewDecoder(file)
|
|
|
- var katSet KeccakKats
|
|
|
- err = dec.Decode(&katSet)
|
|
|
- if err != nil {
|
|
|
- t.Errorf("error decoding KATs: %s", err)
|
|
|
- }
|
|
|
-
|
|
|
- // Do the KATs.
|
|
|
- for functionName, kats := range katSet.Kats {
|
|
|
- d := testDigests[functionName]()
|
|
|
- for _, kat := range kats {
|
|
|
- d.Reset()
|
|
|
- in, err := hex.DecodeString(kat.Message)
|
|
|
- if err != nil {
|
|
|
- t.Errorf("error decoding KAT: %s", err)
|
|
|
- }
|
|
|
- d.Write(in[:kat.Length/8])
|
|
|
- got := strings.ToUpper(hex.EncodeToString(d.Sum(nil)))
|
|
|
- if got != kat.Digest {
|
|
|
- t.Errorf("function=%s, implementation=%s, length=%d\nmessage:\n %s\ngot:\n %s\nwanted:\n %s",
|
|
|
- functionName, impl, kat.Length, kat.Message, got, kat.Digest)
|
|
|
- t.Logf("wanted %+v", kat)
|
|
|
- t.FailNow()
|
|
|
- }
|
|
|
- continue
|
|
|
- }
|
|
|
- }
|
|
|
- })
|
|
|
-}
|
|
|
-
|
|
|
-// TestUnalignedWrite tests that writing data in an arbitrary pattern with
|
|
|
-// small input buffers.
|
|
|
-func TestUnalignedWrite(t *testing.T) {
|
|
|
- testUnalignedAndGeneric(t, func(impl string) {
|
|
|
- buf := sequentialBytes(0x10000)
|
|
|
- for alg, df := range testDigests {
|
|
|
- d := df()
|
|
|
- d.Reset()
|
|
|
- d.Write(buf)
|
|
|
- want := d.Sum(nil)
|
|
|
- d.Reset()
|
|
|
- for i := 0; i < len(buf); {
|
|
|
- // Cycle through offsets which make a 137 byte sequence.
|
|
|
- // Because 137 is prime this sequence should exercise all corner cases.
|
|
|
- offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
|
|
|
- for _, j := range offsets {
|
|
|
- if v := len(buf) - i; v < j {
|
|
|
- j = v
|
|
|
- }
|
|
|
- d.Write(buf[i : i+j])
|
|
|
- i += j
|
|
|
- }
|
|
|
- }
|
|
|
- got := d.Sum(nil)
|
|
|
- if !bytes.Equal(got, want) {
|
|
|
- t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
|
|
|
- }
|
|
|
- }
|
|
|
- })
|
|
|
-}
|
|
|
-
|
|
|
-// TestAppend checks that appending works when reallocation is necessary.
|
|
|
-func TestAppend(t *testing.T) {
|
|
|
- testUnalignedAndGeneric(t, func(impl string) {
|
|
|
- d := New224()
|
|
|
-
|
|
|
- for capacity := 2; capacity <= 66; capacity += 64 {
|
|
|
- // The first time around the loop, Sum will have to reallocate.
|
|
|
- // The second time, it will not.
|
|
|
- buf := make([]byte, 2, capacity)
|
|
|
- d.Reset()
|
|
|
- d.Write([]byte{0xcc})
|
|
|
- buf = d.Sum(buf)
|
|
|
- expected := "0000DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
|
|
|
- if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
|
|
|
- t.Errorf("got %s, want %s", got, expected)
|
|
|
- }
|
|
|
- }
|
|
|
- })
|
|
|
-}
|
|
|
-
|
|
|
-// TestAppendNoRealloc tests that appending works when no reallocation is necessary.
|
|
|
-func TestAppendNoRealloc(t *testing.T) {
|
|
|
- testUnalignedAndGeneric(t, func(impl string) {
|
|
|
- buf := make([]byte, 1, 200)
|
|
|
- d := New224()
|
|
|
- d.Write([]byte{0xcc})
|
|
|
- buf = d.Sum(buf)
|
|
|
- expected := "00DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
|
|
|
- if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
|
|
|
- t.Errorf("%s: got %s, want %s", impl, got, expected)
|
|
|
- }
|
|
|
- })
|
|
|
-}
|
|
|
-
|
|
|
-// TestSqueezing checks that squeezing the full output a single time produces
|
|
|
-// the same output as repeatedly squeezing the instance.
|
|
|
-func TestSqueezing(t *testing.T) {
|
|
|
- testUnalignedAndGeneric(t, func(impl string) {
|
|
|
- for functionName, newShakeHash := range testShakes {
|
|
|
- d0 := newShakeHash()
|
|
|
- d0.Write([]byte(testString))
|
|
|
- ref := make([]byte, 32)
|
|
|
- d0.Read(ref)
|
|
|
-
|
|
|
- d1 := newShakeHash()
|
|
|
- d1.Write([]byte(testString))
|
|
|
- var multiple []byte
|
|
|
- for range ref {
|
|
|
- one := make([]byte, 1)
|
|
|
- d1.Read(one)
|
|
|
- multiple = append(multiple, one...)
|
|
|
- }
|
|
|
- if !bytes.Equal(ref, multiple) {
|
|
|
- t.Errorf("%s (%s): squeezing %d bytes one at a time failed", functionName, impl, len(ref))
|
|
|
- }
|
|
|
- }
|
|
|
- })
|
|
|
-}
|
|
|
-
|
|
|
-// sequentialBytes produces a buffer of size consecutive bytes 0x00, 0x01, ..., used for testing.
|
|
|
-func sequentialBytes(size int) []byte {
|
|
|
- result := make([]byte, size)
|
|
|
- for i := range result {
|
|
|
- result[i] = byte(i)
|
|
|
- }
|
|
|
- return result
|
|
|
-}
|
|
|
-
|
|
|
-// BenchmarkPermutationFunction measures the speed of the permutation function
|
|
|
-// with no input data.
|
|
|
-func BenchmarkPermutationFunction(b *testing.B) {
|
|
|
- b.SetBytes(int64(200))
|
|
|
- var lanes [25]uint64
|
|
|
- for i := 0; i < b.N; i++ {
|
|
|
- keccakF1600(&lanes)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// benchmarkHash tests the speed to hash num buffers of buflen each.
|
|
|
-func benchmarkHash(b *testing.B, h hash.Hash, size, num int) {
|
|
|
- b.StopTimer()
|
|
|
- h.Reset()
|
|
|
- data := sequentialBytes(size)
|
|
|
- b.SetBytes(int64(size * num))
|
|
|
- b.StartTimer()
|
|
|
-
|
|
|
- var state []byte
|
|
|
- for i := 0; i < b.N; i++ {
|
|
|
- for j := 0; j < num; j++ {
|
|
|
- h.Write(data)
|
|
|
- }
|
|
|
- state = h.Sum(state[:0])
|
|
|
- }
|
|
|
- b.StopTimer()
|
|
|
- h.Reset()
|
|
|
-}
|
|
|
-
|
|
|
-// benchmarkShake is specialized to the Shake instances, which don't
|
|
|
-// require a copy on reading output.
|
|
|
-func benchmarkShake(b *testing.B, h ShakeHash, size, num int) {
|
|
|
- b.StopTimer()
|
|
|
- h.Reset()
|
|
|
- data := sequentialBytes(size)
|
|
|
- d := make([]byte, 32)
|
|
|
-
|
|
|
- b.SetBytes(int64(size * num))
|
|
|
- b.StartTimer()
|
|
|
-
|
|
|
- for i := 0; i < b.N; i++ {
|
|
|
- h.Reset()
|
|
|
- for j := 0; j < num; j++ {
|
|
|
- h.Write(data)
|
|
|
- }
|
|
|
- h.Read(d)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-func BenchmarkSha3_512_MTU(b *testing.B) { benchmarkHash(b, New512(), 1350, 1) }
|
|
|
-func BenchmarkSha3_384_MTU(b *testing.B) { benchmarkHash(b, New384(), 1350, 1) }
|
|
|
-func BenchmarkSha3_256_MTU(b *testing.B) { benchmarkHash(b, New256(), 1350, 1) }
|
|
|
-func BenchmarkSha3_224_MTU(b *testing.B) { benchmarkHash(b, New224(), 1350, 1) }
|
|
|
-
|
|
|
-func BenchmarkShake128_MTU(b *testing.B) { benchmarkShake(b, NewShake128(), 1350, 1) }
|
|
|
-func BenchmarkShake256_MTU(b *testing.B) { benchmarkShake(b, NewShake256(), 1350, 1) }
|
|
|
-func BenchmarkShake256_16x(b *testing.B) { benchmarkShake(b, NewShake256(), 16, 1024) }
|
|
|
-func BenchmarkShake256_1MiB(b *testing.B) { benchmarkShake(b, NewShake256(), 1024, 1024) }
|
|
|
-
|
|
|
-func BenchmarkSha3_512_1MiB(b *testing.B) { benchmarkHash(b, New512(), 1024, 1024) }
|
|
|
-
|
|
|
-func Example_sum() {
|
|
|
- buf := []byte("some data to hash")
|
|
|
- // A hash needs to be 64 bytes long to have 256-bit collision resistance.
|
|
|
- h := make([]byte, 64)
|
|
|
- // Compute a 64-byte hash of buf and put it in h.
|
|
|
- ShakeSum256(h, buf)
|
|
|
-}
|
|
|
-
|
|
|
-func Example_mac() {
|
|
|
- k := []byte("this is a secret key; you should generate a strong random key that's at least 32 bytes long")
|
|
|
- buf := []byte("and this is some data to authenticate")
|
|
|
- // A MAC with 32 bytes of output has 256-bit security strength -- if you use at least a 32-byte-long key.
|
|
|
- h := make([]byte, 32)
|
|
|
- d := NewShake256()
|
|
|
- // Write the key into the hash.
|
|
|
- d.Write(k)
|
|
|
- // Now write the data.
|
|
|
- d.Write(buf)
|
|
|
- // Read 32 bytes of output from the hash into h.
|
|
|
- d.Read(h)
|
|
|
-}
|