|
|
@@ -1,3 +1,6 @@
|
|
|
+// Contains the Whisper protocol Envelope element. For formal details please see
|
|
|
+// the specs at https://github.com/ethereum/wiki/wiki/Whisper-PoC-1-Protocol-Spec#envelopes.
|
|
|
+
|
|
|
package whisper
|
|
|
|
|
|
import (
|
|
|
@@ -12,10 +15,8 @@ import (
|
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
|
)
|
|
|
|
|
|
-const (
|
|
|
- DefaultPow = 50 * time.Millisecond
|
|
|
-)
|
|
|
-
|
|
|
+// Envelope represents a clear-text data packet to transmit through the Whisper
|
|
|
+// network. Its contents may or may not be encrypted and signed.
|
|
|
type Envelope struct {
|
|
|
Expiry uint32 // Whisper protocol specifies int32, really should be int64
|
|
|
TTL uint32 // ^^^^^^
|
|
|
@@ -26,33 +27,60 @@ type Envelope struct {
|
|
|
hash common.Hash
|
|
|
}
|
|
|
|
|
|
-func (self *Envelope) Hash() common.Hash {
|
|
|
- if (self.hash == common.Hash{}) {
|
|
|
- enc, _ := rlp.EncodeToBytes(self)
|
|
|
- self.hash = crypto.Sha3Hash(enc)
|
|
|
- }
|
|
|
- return self.hash
|
|
|
-}
|
|
|
-
|
|
|
-func NewEnvelope(ttl time.Duration, topics [][]byte, data *Message) *Envelope {
|
|
|
- exp := time.Now().Add(ttl)
|
|
|
+// NewEnvelope wraps a Whisper message with expiration and destination data
|
|
|
+// included into an envelope for network forwarding.
|
|
|
+func NewEnvelope(ttl time.Duration, topics [][]byte, msg *Message) *Envelope {
|
|
|
return &Envelope{
|
|
|
- Expiry: uint32(exp.Unix()),
|
|
|
+ Expiry: uint32(time.Now().Add(ttl).Unix()),
|
|
|
TTL: uint32(ttl.Seconds()),
|
|
|
Topics: topics,
|
|
|
- Data: data.bytes(),
|
|
|
+ Data: msg.bytes(),
|
|
|
Nonce: 0,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+// Seal closes the envelope by spending the requested amount of time as a proof
|
|
|
+// of work on hashing the data.
|
|
|
func (self *Envelope) Seal(pow time.Duration) {
|
|
|
- self.proveWork(pow)
|
|
|
+ d := make([]byte, 64)
|
|
|
+ copy(d[:32], self.rlpWithoutNonce())
|
|
|
+
|
|
|
+ finish, bestBit := time.Now().Add(pow).UnixNano(), 0
|
|
|
+ for nonce := uint32(0); time.Now().UnixNano() < finish; {
|
|
|
+ for i := 0; i < 1024; i++ {
|
|
|
+ binary.BigEndian.PutUint32(d[60:], nonce)
|
|
|
+
|
|
|
+ firstBit := common.FirstBitSet(common.BigD(crypto.Sha3(d)))
|
|
|
+ if firstBit > bestBit {
|
|
|
+ self.Nonce, bestBit = nonce, firstBit
|
|
|
+ }
|
|
|
+ nonce++
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
+// Valid checks whether the claimed proof of work was indeed executed.
|
|
|
+// TODO: Is this really useful? Isn't this always true?
|
|
|
+func (self *Envelope) valid() bool {
|
|
|
+ d := make([]byte, 64)
|
|
|
+ copy(d[:32], self.rlpWithoutNonce())
|
|
|
+ binary.BigEndian.PutUint32(d[60:], self.Nonce)
|
|
|
+
|
|
|
+ return common.FirstBitSet(common.BigD(crypto.Sha3(d))) > 0
|
|
|
+}
|
|
|
+
|
|
|
+// RlpWithoutNonce returns the RLP encoded envelope contents, except the nonce.
|
|
|
+func (self *Envelope) rlpWithoutNonce() []byte {
|
|
|
+ enc, _ := rlp.EncodeToBytes([]interface{}{self.Expiry, self.TTL, self.Topics, self.Data})
|
|
|
+ return enc
|
|
|
+}
|
|
|
+
|
|
|
+// Open extracts the message contained within a potentially encrypted envelope.
|
|
|
func (self *Envelope) Open(key *ecdsa.PrivateKey) (msg *Message, err error) {
|
|
|
+ // Split open the payload into a message construct
|
|
|
data := self.Data
|
|
|
|
|
|
- message := Message{
|
|
|
+ message := &Message{
|
|
|
Flags: data[0],
|
|
|
}
|
|
|
data = data[1:]
|
|
|
@@ -65,57 +93,38 @@ func (self *Envelope) Open(key *ecdsa.PrivateKey) (msg *Message, err error) {
|
|
|
}
|
|
|
message.Payload = data
|
|
|
|
|
|
- if key != nil {
|
|
|
- message.Payload, err = crypto.Decrypt(key, message.Payload)
|
|
|
- switch err {
|
|
|
- case nil: // OK
|
|
|
- case ecies.ErrInvalidPublicKey: // Payload isn't encrypted
|
|
|
- return &message, err
|
|
|
- default:
|
|
|
- return nil, fmt.Errorf("unable to open envelope. Decrypt failed: %v", err)
|
|
|
- }
|
|
|
+ // Short circuit if the encryption was requested
|
|
|
+ if key == nil {
|
|
|
+ return message, nil
|
|
|
}
|
|
|
- return &message, nil
|
|
|
-}
|
|
|
-
|
|
|
-func (self *Envelope) proveWork(dura time.Duration) {
|
|
|
- var bestBit int
|
|
|
- d := make([]byte, 64)
|
|
|
- enc, _ := rlp.EncodeToBytes(self.withoutNonce())
|
|
|
- copy(d[:32], enc)
|
|
|
-
|
|
|
- then := time.Now().Add(dura).UnixNano()
|
|
|
- for n := uint32(0); time.Now().UnixNano() < then; {
|
|
|
- for i := 0; i < 1024; i++ {
|
|
|
- binary.BigEndian.PutUint32(d[60:], n)
|
|
|
+ // Otherwise try to decrypt the message
|
|
|
+ message.Payload, err = crypto.Decrypt(key, message.Payload)
|
|
|
+ switch err {
|
|
|
+ case nil:
|
|
|
+ return message, nil
|
|
|
|
|
|
- fbs := common.FirstBitSet(common.BigD(crypto.Sha3(d)))
|
|
|
- if fbs > bestBit {
|
|
|
- bestBit = fbs
|
|
|
- self.Nonce = n
|
|
|
- }
|
|
|
+ case ecies.ErrInvalidPublicKey: // Payload isn't encrypted
|
|
|
+ return message, err
|
|
|
|
|
|
- n++
|
|
|
- }
|
|
|
+ default:
|
|
|
+ return nil, fmt.Errorf("unable to open envelope, decrypt failed: %v", err)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-func (self *Envelope) valid() bool {
|
|
|
- d := make([]byte, 64)
|
|
|
- enc, _ := rlp.EncodeToBytes(self.withoutNonce())
|
|
|
- copy(d[:32], enc)
|
|
|
- binary.BigEndian.PutUint32(d[60:], self.Nonce)
|
|
|
- return common.FirstBitSet(common.BigD(crypto.Sha3(d))) > 0
|
|
|
-}
|
|
|
-
|
|
|
-func (self *Envelope) withoutNonce() interface{} {
|
|
|
- return []interface{}{self.Expiry, self.TTL, self.Topics, self.Data}
|
|
|
+// Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
|
|
|
+func (self *Envelope) Hash() common.Hash {
|
|
|
+ if (self.hash == common.Hash{}) {
|
|
|
+ enc, _ := rlp.EncodeToBytes(self)
|
|
|
+ self.hash = crypto.Sha3Hash(enc)
|
|
|
+ }
|
|
|
+ return self.hash
|
|
|
}
|
|
|
|
|
|
// rlpenv is an Envelope but is not an rlp.Decoder.
|
|
|
// It is used for decoding because we need to
|
|
|
type rlpenv Envelope
|
|
|
|
|
|
+// DecodeRLP decodes an Envelope from an RLP data stream.
|
|
|
func (self *Envelope) DecodeRLP(s *rlp.Stream) error {
|
|
|
raw, err := s.Raw()
|
|
|
if err != nil {
|