|
|
@@ -0,0 +1,690 @@
|
|
|
+// Copyright 2015 The go-ethereum Authors
|
|
|
+// This file is part of the go-ethereum library.
|
|
|
+//
|
|
|
+// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
+// it under the terms of the GNU Lesser General Public License as published by
|
|
|
+// the Free Software Foundation, either version 3 of the License, or
|
|
|
+// (at your option) any later version.
|
|
|
+//
|
|
|
+// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+// GNU Lesser General Public License for more details.
|
|
|
+//
|
|
|
+// You should have received a copy of the GNU Lesser General Public License
|
|
|
+// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
+
|
|
|
+// Package rlpx implements the RLPx transport protocol.
|
|
|
+package rlpx
|
|
|
+
|
|
|
+import (
|
|
|
+ "bytes"
|
|
|
+ "crypto/aes"
|
|
|
+ "crypto/cipher"
|
|
|
+ "crypto/ecdsa"
|
|
|
+ "crypto/elliptic"
|
|
|
+ "crypto/hmac"
|
|
|
+ "crypto/rand"
|
|
|
+ "encoding/binary"
|
|
|
+ "errors"
|
|
|
+ "fmt"
|
|
|
+ "hash"
|
|
|
+ "io"
|
|
|
+ mrand "math/rand"
|
|
|
+ "net"
|
|
|
+ "time"
|
|
|
+
|
|
|
+ "github.com/VictoriaMetrics/fastcache"
|
|
|
+ "github.com/golang/snappy"
|
|
|
+ "github.com/oxtoacart/bpool"
|
|
|
+ "golang.org/x/crypto/sha3"
|
|
|
+
|
|
|
+ "blockchain-go/rlp"
|
|
|
+ "github.com/ethereum/go-ethereum/crypto"
|
|
|
+ "github.com/ethereum/go-ethereum/crypto/ecies"
|
|
|
+)
|
|
|
+
|
|
|
+var snappyCache *fastcache.Cache
|
|
|
+
|
|
|
+func init() {
|
|
|
+ snappyCache = fastcache.New(50 * 1024 * 1024)
|
|
|
+}
|
|
|
+
|
|
|
+// Conn is an RLPx network connection. It wraps a low-level network connection. The
|
|
|
+// underlying connection should not be used for other activity when it is wrapped by Conn.
|
|
|
+//
|
|
|
+// Before sending messages, a handshake must be performed by calling the Handshake method.
|
|
|
+// This type is not generally safe for concurrent use, but reading and writing of messages
|
|
|
+// may happen concurrently after the handshake.
|
|
|
+type Conn struct {
|
|
|
+ dialDest *ecdsa.PublicKey
|
|
|
+ conn net.Conn
|
|
|
+ handshake *handshakeState
|
|
|
+ snappy bool
|
|
|
+}
|
|
|
+
|
|
|
+type handshakeState struct {
|
|
|
+ enc cipher.Stream
|
|
|
+ dec cipher.Stream
|
|
|
+
|
|
|
+ macCipher cipher.Block
|
|
|
+ egressMAC hash.Hash
|
|
|
+ ingressMAC hash.Hash
|
|
|
+}
|
|
|
+
|
|
|
+// NewConn wraps the given network connection. If dialDest is non-nil, the connection
|
|
|
+// behaves as the initiator during the handshake.
|
|
|
+func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn {
|
|
|
+ return &Conn{
|
|
|
+ dialDest: dialDest,
|
|
|
+ conn: conn,
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// SetSnappy enables or disables snappy compression of messages. This is usually called
|
|
|
+// after the devp2p Hello message exchange when the negotiated version indicates that
|
|
|
+// compression is available on both ends of the connection.
|
|
|
+func (c *Conn) SetSnappy(snappy bool) {
|
|
|
+ c.snappy = snappy
|
|
|
+}
|
|
|
+
|
|
|
+// SetReadDeadline sets the deadline for all future read operations.
|
|
|
+func (c *Conn) SetReadDeadline(time time.Time) error {
|
|
|
+ return c.conn.SetReadDeadline(time)
|
|
|
+}
|
|
|
+
|
|
|
+// SetWriteDeadline sets the deadline for all future write operations.
|
|
|
+func (c *Conn) SetWriteDeadline(time time.Time) error {
|
|
|
+ return c.conn.SetWriteDeadline(time)
|
|
|
+}
|
|
|
+
|
|
|
+// SetDeadline sets the deadline for all future read and write operations.
|
|
|
+func (c *Conn) SetDeadline(time time.Time) error {
|
|
|
+ return c.conn.SetDeadline(time)
|
|
|
+}
|
|
|
+
|
|
|
+// Read reads a message from the connection.
|
|
|
+func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
|
|
|
+ if c.handshake == nil {
|
|
|
+ panic("can't ReadMsg before handshake")
|
|
|
+ }
|
|
|
+
|
|
|
+ frame, err := c.handshake.readFrame(c.conn)
|
|
|
+ if err != nil {
|
|
|
+ return 0, nil, 0, err
|
|
|
+ }
|
|
|
+ code, data, err = rlp.SplitUint64(frame)
|
|
|
+ if err != nil {
|
|
|
+ return 0, nil, 0, fmt.Errorf("invalid message code: %v", err)
|
|
|
+ }
|
|
|
+ wireSize = len(data)
|
|
|
+
|
|
|
+ // If snappy is enabled, verify and decompress message.
|
|
|
+ if c.snappy {
|
|
|
+ var actualSize int
|
|
|
+ actualSize, err = snappy.DecodedLen(data)
|
|
|
+ if err != nil {
|
|
|
+ return code, nil, 0, err
|
|
|
+ }
|
|
|
+ if actualSize > maxUint24 {
|
|
|
+ return code, nil, 0, errPlainMessageTooLarge
|
|
|
+ }
|
|
|
+ data, err = snappy.Decode(nil, data)
|
|
|
+ }
|
|
|
+ return code, data, wireSize, err
|
|
|
+}
|
|
|
+
|
|
|
+func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) {
|
|
|
+ // read the header
|
|
|
+ headbuf := make([]byte, 32)
|
|
|
+ if _, err := io.ReadFull(conn, headbuf); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ // verify header mac
|
|
|
+ shouldMAC := updateMAC(h.ingressMAC, h.macCipher, headbuf[:16])
|
|
|
+ if !hmac.Equal(shouldMAC, headbuf[16:]) {
|
|
|
+ return nil, errors.New("bad header MAC")
|
|
|
+ }
|
|
|
+ h.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
|
|
|
+ fsize := readInt24(headbuf)
|
|
|
+ // ignore protocol type for now
|
|
|
+
|
|
|
+ // read the frame content
|
|
|
+ var rsize = fsize // frame size rounded up to 16 byte boundary
|
|
|
+ if padding := fsize % 16; padding > 0 {
|
|
|
+ rsize += 16 - padding
|
|
|
+ }
|
|
|
+ framebuf := make([]byte, rsize)
|
|
|
+ if _, err := io.ReadFull(conn, framebuf); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ // read and validate frame MAC. we can re-use headbuf for that.
|
|
|
+ h.ingressMAC.Write(framebuf)
|
|
|
+ fmacseed := h.ingressMAC.Sum(nil)
|
|
|
+ if _, err := io.ReadFull(conn, headbuf[:16]); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ shouldMAC = updateMAC(h.ingressMAC, h.macCipher, fmacseed)
|
|
|
+ if !hmac.Equal(shouldMAC, headbuf[:16]) {
|
|
|
+ return nil, errors.New("bad frame MAC")
|
|
|
+ }
|
|
|
+
|
|
|
+ // decrypt frame content
|
|
|
+ h.dec.XORKeyStream(framebuf, framebuf)
|
|
|
+ return framebuf[:fsize], nil
|
|
|
+}
|
|
|
+
|
|
|
+// Write writes a message to the connection.
|
|
|
+//
|
|
|
+// Write returns the written size of the message data. This may be less than or equal to
|
|
|
+// len(data) depending on whether snappy compression is enabled.
|
|
|
+func (c *Conn) Write(code uint64, data []byte) (uint32, error) {
|
|
|
+ if c.handshake == nil {
|
|
|
+ panic("can't WriteMsg before handshake")
|
|
|
+ }
|
|
|
+ if len(data) > maxUint24 {
|
|
|
+ return 0, errPlainMessageTooLarge
|
|
|
+ }
|
|
|
+ if c.snappy {
|
|
|
+ if encodedResult, ok := snappyCache.HasGet(nil, data); ok {
|
|
|
+ data = encodedResult
|
|
|
+ } else {
|
|
|
+ encodedData := snappy.Encode(nil, data)
|
|
|
+ snappyCache.Set(data, encodedData)
|
|
|
+
|
|
|
+ data = encodedData
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ wireSize := uint32(len(data))
|
|
|
+ err := c.handshake.writeFrame(c.conn, code, data)
|
|
|
+ return wireSize, err
|
|
|
+}
|
|
|
+
|
|
|
+func (h *handshakeState) writeFrame(conn io.Writer, code uint64, data []byte) error {
|
|
|
+ ptype, _ := rlp.EncodeToBytes(code)
|
|
|
+
|
|
|
+ // write header
|
|
|
+ headbuf := make([]byte, 32)
|
|
|
+ fsize := len(ptype) + len(data)
|
|
|
+ if fsize > maxUint24 {
|
|
|
+ return errPlainMessageTooLarge
|
|
|
+ }
|
|
|
+ putInt24(uint32(fsize), headbuf)
|
|
|
+ copy(headbuf[3:], zeroHeader)
|
|
|
+ h.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
|
|
|
+
|
|
|
+ // write header MAC
|
|
|
+ copy(headbuf[16:], updateMAC(h.egressMAC, h.macCipher, headbuf[:16]))
|
|
|
+ if _, err := conn.Write(headbuf); err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+
|
|
|
+ // write encrypted frame, updating the egress MAC hash with
|
|
|
+ // the data written to conn.
|
|
|
+ tee := cipher.StreamWriter{S: h.enc, W: io.MultiWriter(conn, h.egressMAC)}
|
|
|
+ if _, err := tee.Write(ptype); err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ if _, err := tee.Write(data); err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ if padding := fsize % 16; padding > 0 {
|
|
|
+ if _, err := tee.Write(zero16[:16-padding]); err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // write frame MAC. egress MAC hash is up to date because
|
|
|
+ // frame content was written to it as well.
|
|
|
+ fmacseed := h.egressMAC.Sum(nil)
|
|
|
+ mac := updateMAC(h.egressMAC, h.macCipher, fmacseed)
|
|
|
+ _, err := conn.Write(mac)
|
|
|
+ return err
|
|
|
+}
|
|
|
+
|
|
|
+func readInt24(b []byte) uint32 {
|
|
|
+ return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
|
|
|
+}
|
|
|
+
|
|
|
+func putInt24(v uint32, b []byte) {
|
|
|
+ b[0] = byte(v >> 16)
|
|
|
+ b[1] = byte(v >> 8)
|
|
|
+ b[2] = byte(v)
|
|
|
+}
|
|
|
+
|
|
|
+const BpoolMaxSize = 4
|
|
|
+
|
|
|
+var bytepool = bpool.NewBytePool(BpoolMaxSize, aes.BlockSize)
|
|
|
+
|
|
|
+// updateMAC reseeds the given hash with encrypted seed.
|
|
|
+// it returns the first 16 bytes of the hash sum after seeding.
|
|
|
+func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
|
|
|
+ aesbuf := bytepool.Get()
|
|
|
+ block.Encrypt(aesbuf, mac.Sum(nil))
|
|
|
+ for i := range aesbuf {
|
|
|
+ aesbuf[i] ^= seed[i]
|
|
|
+ }
|
|
|
+ mac.Write(aesbuf)
|
|
|
+ bytepool.Put(aesbuf)
|
|
|
+ return mac.Sum(nil)[:16]
|
|
|
+}
|
|
|
+
|
|
|
+// Handshake performs the handshake. This must be called before any data is written
|
|
|
+// or read from the connection.
|
|
|
+func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
|
|
|
+ var (
|
|
|
+ sec Secrets
|
|
|
+ err error
|
|
|
+ )
|
|
|
+ if c.dialDest != nil {
|
|
|
+ sec, err = initiatorEncHandshake(c.conn, prv, c.dialDest)
|
|
|
+ } else {
|
|
|
+ sec, err = receiverEncHandshake(c.conn, prv)
|
|
|
+ }
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ c.InitWithSecrets(sec)
|
|
|
+ return sec.remote, err
|
|
|
+}
|
|
|
+
|
|
|
+// InitWithSecrets injects connection secrets as if a handshake had
|
|
|
+// been performed. This cannot be called after the handshake.
|
|
|
+func (c *Conn) InitWithSecrets(sec Secrets) {
|
|
|
+ if c.handshake != nil {
|
|
|
+ panic("can't handshake twice")
|
|
|
+ }
|
|
|
+ macc, err := aes.NewCipher(sec.MAC)
|
|
|
+ if err != nil {
|
|
|
+ panic("invalid MAC secret: " + err.Error())
|
|
|
+ }
|
|
|
+ encc, err := aes.NewCipher(sec.AES)
|
|
|
+ if err != nil {
|
|
|
+ panic("invalid AES secret: " + err.Error())
|
|
|
+ }
|
|
|
+ // we use an all-zeroes IV for AES because the key used
|
|
|
+ // for encryption is ephemeral.
|
|
|
+ iv := make([]byte, encc.BlockSize())
|
|
|
+ c.handshake = &handshakeState{
|
|
|
+ enc: cipher.NewCTR(encc, iv),
|
|
|
+ dec: cipher.NewCTR(encc, iv),
|
|
|
+ macCipher: macc,
|
|
|
+ egressMAC: sec.EgressMAC,
|
|
|
+ ingressMAC: sec.IngressMAC,
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Close closes the underlying network connection.
|
|
|
+func (c *Conn) Close() error {
|
|
|
+ return c.conn.Close()
|
|
|
+}
|
|
|
+
|
|
|
+// Constants for the handshake.
|
|
|
+const (
|
|
|
+ maxUint24 = int(^uint32(0) >> 8)
|
|
|
+
|
|
|
+ sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
|
|
|
+ sigLen = crypto.SignatureLength // elliptic S256
|
|
|
+ pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
|
|
|
+ shaLen = 32 // hash length (for nonce etc)
|
|
|
+
|
|
|
+ authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
|
|
|
+ authRespLen = pubLen + shaLen + 1
|
|
|
+
|
|
|
+ eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
|
|
|
+
|
|
|
+ encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake
|
|
|
+ encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
|
|
|
+)
|
|
|
+
|
|
|
+var (
|
|
|
+ // this is used in place of actual frame header data.
|
|
|
+ // TODO: replace this when Msg contains the protocol type code.
|
|
|
+ zeroHeader = []byte{0xC2, 0x80, 0x80}
|
|
|
+ // sixteen zero bytes
|
|
|
+ zero16 = make([]byte, 16)
|
|
|
+
|
|
|
+ // errPlainMessageTooLarge is returned if a decompressed message length exceeds
|
|
|
+ // the allowed 24 bits (i.e. length >= 16MB).
|
|
|
+ errPlainMessageTooLarge = errors.New("message length >= 16MB")
|
|
|
+)
|
|
|
+
|
|
|
+// Secrets represents the connection secrets which are negotiated during the handshake.
|
|
|
+type Secrets struct {
|
|
|
+ AES, MAC []byte
|
|
|
+ EgressMAC, IngressMAC hash.Hash
|
|
|
+ remote *ecdsa.PublicKey
|
|
|
+}
|
|
|
+
|
|
|
+// encHandshake contains the state of the encryption handshake.
|
|
|
+type encHandshake struct {
|
|
|
+ initiator bool
|
|
|
+ remote *ecies.PublicKey // remote-pubk
|
|
|
+ initNonce, respNonce []byte // nonce
|
|
|
+ randomPrivKey *ecies.PrivateKey // ecdhe-random
|
|
|
+ remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
|
|
|
+}
|
|
|
+
|
|
|
+// RLPx v4 handshake auth (defined in EIP-8).
|
|
|
+type authMsgV4 struct {
|
|
|
+ gotPlain bool // whether read packet had plain format.
|
|
|
+
|
|
|
+ Signature [sigLen]byte
|
|
|
+ InitiatorPubkey [pubLen]byte
|
|
|
+ Nonce [shaLen]byte
|
|
|
+ Version uint
|
|
|
+
|
|
|
+ // Ignore additional fields (forward-compatibility)
|
|
|
+ Rest []rlp.RawValue `rlp:"tail"`
|
|
|
+}
|
|
|
+
|
|
|
+// RLPx v4 handshake response (defined in EIP-8).
|
|
|
+type authRespV4 struct {
|
|
|
+ RandomPubkey [pubLen]byte
|
|
|
+ Nonce [shaLen]byte
|
|
|
+ Version uint
|
|
|
+
|
|
|
+ // Ignore additional fields (forward-compatibility)
|
|
|
+ Rest []rlp.RawValue `rlp:"tail"`
|
|
|
+}
|
|
|
+
|
|
|
+// receiverEncHandshake negotiates a session token on conn.
|
|
|
+// it should be called on the listening side of the connection.
|
|
|
+//
|
|
|
+// prv is the local client's private key.
|
|
|
+func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) {
|
|
|
+ authMsg := new(authMsgV4)
|
|
|
+ authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
|
|
|
+ if err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ h := new(encHandshake)
|
|
|
+ if err := h.handleAuthMsg(authMsg, prv); err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+
|
|
|
+ authRespMsg, err := h.makeAuthResp()
|
|
|
+ if err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ var authRespPacket []byte
|
|
|
+ if authMsg.gotPlain {
|
|
|
+ authRespPacket, err = authRespMsg.sealPlain(h)
|
|
|
+ } else {
|
|
|
+ authRespPacket, err = sealEIP8(authRespMsg, h)
|
|
|
+ }
|
|
|
+ if err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ if _, err = conn.Write(authRespPacket); err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ return h.secrets(authPacket, authRespPacket)
|
|
|
+}
|
|
|
+
|
|
|
+func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
|
|
|
+ // Import the remote identity.
|
|
|
+ rpub, err := importPublicKey(msg.InitiatorPubkey[:])
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ h.initNonce = msg.Nonce[:]
|
|
|
+ h.remote = rpub
|
|
|
+
|
|
|
+ // Generate random keypair for ECDH.
|
|
|
+ // If a private key is already set, use it instead of generating one (for testing).
|
|
|
+ if h.randomPrivKey == nil {
|
|
|
+ h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check the signature.
|
|
|
+ token, err := h.staticSharedSecret(prv)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ signedMsg := xor(token, h.initNonce)
|
|
|
+ remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:])
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// secrets is called after the handshake is completed.
|
|
|
+// It extracts the connection secrets from the handshake values.
|
|
|
+func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) {
|
|
|
+ ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
|
|
|
+ if err != nil {
|
|
|
+ return Secrets{}, err
|
|
|
+ }
|
|
|
+
|
|
|
+ // derive base secrets from ephemeral key agreement
|
|
|
+ sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
|
|
|
+ aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
|
|
|
+ s := Secrets{
|
|
|
+ remote: h.remote.ExportECDSA(),
|
|
|
+ AES: aesSecret,
|
|
|
+ MAC: crypto.Keccak256(ecdheSecret, aesSecret),
|
|
|
+ }
|
|
|
+
|
|
|
+ // setup sha3 instances for the MACs
|
|
|
+ mac1 := sha3.NewLegacyKeccak256()
|
|
|
+ mac1.Write(xor(s.MAC, h.respNonce))
|
|
|
+ mac1.Write(auth)
|
|
|
+ mac2 := sha3.NewLegacyKeccak256()
|
|
|
+ mac2.Write(xor(s.MAC, h.initNonce))
|
|
|
+ mac2.Write(authResp)
|
|
|
+ if h.initiator {
|
|
|
+ s.EgressMAC, s.IngressMAC = mac1, mac2
|
|
|
+ } else {
|
|
|
+ s.EgressMAC, s.IngressMAC = mac2, mac1
|
|
|
+ }
|
|
|
+
|
|
|
+ return s, nil
|
|
|
+}
|
|
|
+
|
|
|
+// staticSharedSecret returns the static shared secret, the result
|
|
|
+// of key agreement between the local and remote static node key.
|
|
|
+func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
|
|
|
+ return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen)
|
|
|
+}
|
|
|
+
|
|
|
+// initiatorEncHandshake negotiates a session token on conn.
|
|
|
+// it should be called on the dialing side of the connection.
|
|
|
+//
|
|
|
+// prv is the local client's private key.
|
|
|
+func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) {
|
|
|
+ h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)}
|
|
|
+ authMsg, err := h.makeAuthMsg(prv)
|
|
|
+ if err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ authPacket, err := sealEIP8(authMsg, h)
|
|
|
+ if err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+
|
|
|
+ if _, err = conn.Write(authPacket); err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+
|
|
|
+ authRespMsg := new(authRespV4)
|
|
|
+ authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
|
|
|
+ if err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ if err := h.handleAuthResp(authRespMsg); err != nil {
|
|
|
+ return s, err
|
|
|
+ }
|
|
|
+ return h.secrets(authPacket, authRespPacket)
|
|
|
+}
|
|
|
+
|
|
|
+// makeAuthMsg creates the initiator handshake message.
|
|
|
+func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
|
|
|
+ // Generate random initiator nonce.
|
|
|
+ h.initNonce = make([]byte, shaLen)
|
|
|
+ _, err := rand.Read(h.initNonce)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ // Generate random keypair to for ECDH.
|
|
|
+ h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ // Sign known message: static-shared-secret ^ nonce
|
|
|
+ token, err := h.staticSharedSecret(prv)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ signed := xor(token, h.initNonce)
|
|
|
+ signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ msg := new(authMsgV4)
|
|
|
+ copy(msg.Signature[:], signature)
|
|
|
+ copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
|
|
|
+ copy(msg.Nonce[:], h.initNonce)
|
|
|
+ msg.Version = 4
|
|
|
+ return msg, nil
|
|
|
+}
|
|
|
+
|
|
|
+func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
|
|
|
+ h.respNonce = msg.Nonce[:]
|
|
|
+ h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
|
|
|
+ return err
|
|
|
+}
|
|
|
+
|
|
|
+func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
|
|
|
+ // Generate random nonce.
|
|
|
+ h.respNonce = make([]byte, shaLen)
|
|
|
+ if _, err = rand.Read(h.respNonce); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ msg = new(authRespV4)
|
|
|
+ copy(msg.Nonce[:], h.respNonce)
|
|
|
+ copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
|
|
|
+ msg.Version = 4
|
|
|
+ return msg, nil
|
|
|
+}
|
|
|
+
|
|
|
+func (msg *authMsgV4) decodePlain(input []byte) {
|
|
|
+ n := copy(msg.Signature[:], input)
|
|
|
+ n += shaLen // skip sha3(initiator-ephemeral-pubk)
|
|
|
+ n += copy(msg.InitiatorPubkey[:], input[n:])
|
|
|
+ copy(msg.Nonce[:], input[n:])
|
|
|
+ msg.Version = 4
|
|
|
+ msg.gotPlain = true
|
|
|
+}
|
|
|
+
|
|
|
+func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
|
|
|
+ buf := make([]byte, authRespLen)
|
|
|
+ n := copy(buf, msg.RandomPubkey[:])
|
|
|
+ copy(buf[n:], msg.Nonce[:])
|
|
|
+ return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil)
|
|
|
+}
|
|
|
+
|
|
|
+func (msg *authRespV4) decodePlain(input []byte) {
|
|
|
+ n := copy(msg.RandomPubkey[:], input)
|
|
|
+ copy(msg.Nonce[:], input[n:])
|
|
|
+ msg.Version = 4
|
|
|
+}
|
|
|
+
|
|
|
+var padSpace = make([]byte, 300)
|
|
|
+
|
|
|
+func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
|
|
|
+ buf := new(bytes.Buffer)
|
|
|
+ if err := rlp.Encode(buf, msg); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ // pad with random amount of data. the amount needs to be at least 100 bytes to make
|
|
|
+ // the message distinguishable from pre-EIP-8 handshakes.
|
|
|
+ pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
|
|
|
+ buf.Write(pad)
|
|
|
+ prefix := make([]byte, 2)
|
|
|
+ binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
|
|
|
+
|
|
|
+ enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix)
|
|
|
+ return append(prefix, enc...), err
|
|
|
+}
|
|
|
+
|
|
|
+type plainDecoder interface {
|
|
|
+ decodePlain([]byte)
|
|
|
+}
|
|
|
+
|
|
|
+func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
|
|
|
+ buf := make([]byte, plainSize)
|
|
|
+ if _, err := io.ReadFull(r, buf); err != nil {
|
|
|
+ return buf, err
|
|
|
+ }
|
|
|
+ // Attempt decoding pre-EIP-8 "plain" format.
|
|
|
+ key := ecies.ImportECDSA(prv)
|
|
|
+ if dec, err := key.Decrypt(buf, nil, nil); err == nil {
|
|
|
+ msg.decodePlain(dec)
|
|
|
+ return buf, nil
|
|
|
+ }
|
|
|
+ // Could be EIP-8 format, try that.
|
|
|
+ prefix := buf[:2]
|
|
|
+ size := binary.BigEndian.Uint16(prefix)
|
|
|
+ if size < uint16(plainSize) {
|
|
|
+ return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
|
|
|
+ }
|
|
|
+ buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
|
|
|
+ if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
|
|
|
+ return buf, err
|
|
|
+ }
|
|
|
+ dec, err := key.Decrypt(buf[2:], nil, prefix)
|
|
|
+ if err != nil {
|
|
|
+ return buf, err
|
|
|
+ }
|
|
|
+ // Can't use rlp.DecodeBytes here because it rejects
|
|
|
+ // trailing data (forward-compatibility).
|
|
|
+ s := rlp.NewStream(bytes.NewReader(dec), 0)
|
|
|
+ return buf, s.Decode(msg)
|
|
|
+}
|
|
|
+
|
|
|
+// importPublicKey unmarshals 512 bit public keys.
|
|
|
+func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
|
|
|
+ var pubKey65 []byte
|
|
|
+ switch len(pubKey) {
|
|
|
+ case 64:
|
|
|
+ // add 'uncompressed key' flag
|
|
|
+ pubKey65 = append([]byte{0x04}, pubKey...)
|
|
|
+ case 65:
|
|
|
+ pubKey65 = pubKey
|
|
|
+ default:
|
|
|
+ return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
|
|
|
+ }
|
|
|
+ // TODO: fewer pointless conversions
|
|
|
+ pub, err := crypto.UnmarshalPubkey(pubKey65)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+ return ecies.ImportECDSAPublic(pub), nil
|
|
|
+}
|
|
|
+
|
|
|
+func exportPubkey(pub *ecies.PublicKey) []byte {
|
|
|
+ if pub == nil {
|
|
|
+ panic("nil pubkey")
|
|
|
+ }
|
|
|
+ return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
|
|
|
+}
|
|
|
+
|
|
|
+func xor(one, other []byte) (xor []byte) {
|
|
|
+ xor = make([]byte, len(one))
|
|
|
+ for i := 0; i < len(one); i++ {
|
|
|
+ xor[i] = one[i] ^ other[i]
|
|
|
+ }
|
|
|
+ return xor
|
|
|
+}
|