socket_tool.rs 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. use std::net::{IpAddr, Ipv4Addr, SocketAddr};
  2. use std::sync::Arc;
  3. use std::sync::atomic::{AtomicBool, Ordering};
  4. use std::time::{Duration};
  5. use chrono::Utc;
  6. use futures_channel::mpsc::{UnboundedReceiver, UnboundedSender};
  7. use futures_util::{future, pin_mut, SinkExt, StreamExt};
  8. use futures_util::stream::{SplitSink, SplitStream};
  9. use ring::hmac;
  10. use serde_json::{json, Value};
  11. use tokio::net::TcpStream;
  12. use tokio::sync::Mutex;
  13. use tokio::time::Instant;
  14. use tokio_tungstenite::{connect_async, MaybeTlsStream, WebSocketStream};
  15. use tokio_tungstenite::tungstenite::{Error, Message};
  16. use tracing::{error, info, trace};
  17. use crate::proxy;
  18. use crate::proxy::{ProxyEnum, ProxyResponseEnum};
  19. use crate::response_base::ResponseData;
  20. #[derive(Debug)]
  21. pub enum HeartbeatType {
  22. Ping,
  23. Pong,
  24. Custom(String),
  25. }
  26. pub struct AbstractWsMode {}
  27. impl AbstractWsMode {
  28. pub async fn ws_connected<T, PI, PO, F, B, Future>(write_to_socket_rx_arc: Arc<Mutex<UnboundedReceiver<Message>>>,
  29. is_first_login: bool,
  30. label: String,
  31. is_shutdown_arc: Arc<AtomicBool>,
  32. handle_function: &F,
  33. subscribe_array: Vec<String>,
  34. ws_stream: WebSocketStream<MaybeTlsStream<TcpStream>>,
  35. message_text: T,
  36. message_ping: PI,
  37. message_pong: PO,
  38. message_binary: B)
  39. where T: Fn(String) -> Option<ResponseData> + Copy,
  40. PI: Fn(Vec<u8>) -> Option<ResponseData> + Copy,
  41. PO: Fn(Vec<u8>) -> Option<ResponseData> + Copy,
  42. F: Fn(ResponseData) -> Future + Clone,
  43. B: Fn(Vec<u8>) -> Option<ResponseData> + Copy,
  44. Future: future::Future<Output=()> + Send + 'static,
  45. {
  46. let (ws_write, mut ws_read) = ws_stream.split();
  47. let ws_write_arc = Arc::new(Mutex::new(ws_write));
  48. // 将socket 的写操作与【写通道(外部向socket写)】链接起来,将数据以ok的结构体封装进行传递
  49. // 这里是形成链式操作,如果要将外界的信息传进来(使用socket查单、下单之类的,部分交易所可以支持),就要这要弄
  50. let mut write_to_socket_rx = write_to_socket_rx_arc.lock().await;
  51. let ws_write_channel_clone = Arc::clone(&ws_write_arc);
  52. let stdin_to_ws = async {
  53. while let Some(message) = write_to_socket_rx.next().await {
  54. let mut write_lock2 = ws_write_channel_clone.lock().await;
  55. write_lock2.send(message).await?;
  56. }
  57. Ok::<(), Error>(())
  58. };
  59. // 如果不需要事先登录,则直接订阅消息
  60. if !is_first_login {
  61. info!("不需要登录,订阅内容:{:?}", subscribe_array.clone());
  62. for s in &subscribe_array {
  63. let mut write_lock = ws_write_arc.lock().await;
  64. write_lock.send(Message::Text(s.parse().unwrap())).await.expect("订阅消息失败");
  65. }
  66. }
  67. let ws_write_inner = Arc::clone(&ws_write_arc);
  68. let ws_to_stdout = async {
  69. while let Some(message) = ws_read.next().await {
  70. if !is_shutdown_arc.load(Ordering::Relaxed) {
  71. continue;
  72. }
  73. let response_data = AbstractWsMode::analysis_message(message, message_text, message_ping, message_pong, message_binary);
  74. // let response_data = func(message);
  75. if response_data.is_some() {
  76. let mut data = response_data.unwrap();
  77. data.label = label.clone();
  78. let code = data.code.clone();
  79. if code == 200 {
  80. let mut data_c = data.clone();
  81. data_c.ins = Instant::now();
  82. data_c.time = Utc::now().timestamp_millis();
  83. handle_function(data_c).await;
  84. }
  85. /*
  86. 200 -正确返回
  87. -200 -登录成功
  88. -201 -订阅成功
  89. -300 -客户端收到服务器心跳ping,需要响应
  90. -301 -客户端收到服务器心跳pong,需要响应
  91. -302 -客户端收到服务器心跳自定义,需要响应自定义
  92. */
  93. match code {
  94. 200 => {
  95. let mut data_c = data.clone();
  96. data_c.ins = Instant::now();
  97. data_c.time = Utc::now().timestamp_millis();
  98. handle_function(data_c).await;
  99. }
  100. -200 => {
  101. //登录成功
  102. info!("ws登录成功:{:?}", data);
  103. info!("订阅内容:{:?}", subscribe_array.clone());
  104. for s in &subscribe_array {
  105. let mut write_lock = ws_write_arc.lock().await;
  106. write_lock.send(Message::Text(s.parse().unwrap())).await.expect("订阅消息失败");
  107. }
  108. info!("订阅完成!");
  109. }
  110. -201 => {
  111. //订阅成功
  112. trace!("订阅成功:{:?}", data);
  113. }
  114. -300 => {
  115. //服务器发送心跳 ping 给客户端,客户端需要pong回应
  116. trace!("服务器响应-ping");
  117. if data.data != Value::Null {
  118. let mut ws_write = ws_write_inner.lock().await;
  119. ws_write.send(Message::Pong(Vec::from(data.data.to_string()))).await?;
  120. trace!("客户端回应服务器-pong");
  121. }
  122. }
  123. -301 => {
  124. //服务器发送心跳 pong 给客户端,客户端需要ping回应
  125. trace!("服务器响应-pong");
  126. if data.data != Value::Null {
  127. let mut ws_write = ws_write_inner.lock().await;
  128. ws_write.send(Message::Ping(Vec::from(data.data.to_string()))).await?;
  129. trace!("客户端回应服务器-ping");
  130. }
  131. }
  132. -302 => {
  133. //客户端收到服务器心跳自定义,需要响应自定义
  134. trace!("特定字符心跳,特殊响应:{:?}", data);
  135. let mut ws_write = ws_write_inner.lock().await;
  136. ws_write.send(Message::Text(data.data.to_string())).await?;
  137. trace!("特殊字符心跳-回应完成");
  138. }
  139. _ => {
  140. trace!("未知:{:?}",data);
  141. }
  142. }
  143. }
  144. }
  145. Ok::<(), Error>(())
  146. };
  147. //必须操作。,因为不同于其他的高级语言,有自动内存管理,所以为了防范地址改变,所以需要做此处理
  148. pin_mut!(stdin_to_ws, ws_to_stdout,);
  149. future::select(stdin_to_ws, ws_to_stdout).await;
  150. }
  151. //创建链接
  152. pub async fn ws_connect_async<T, PI, PO, F, B, Future>(is_shutdown_arc: Arc<AtomicBool>,
  153. handle_function: F,
  154. address_url: String,
  155. is_first_login: bool,
  156. label: String,
  157. subscribe_array: Vec<String>,
  158. write_to_socket_rx_arc: Arc<Mutex<UnboundedReceiver<Message>>>,
  159. message_text: T,
  160. message_ping: PI,
  161. message_pong: PO,
  162. message_binary: B)
  163. where T: Fn(String) -> Option<ResponseData> + Copy,
  164. PI: Fn(Vec<u8>) -> Option<ResponseData> + Copy,
  165. PO: Fn(Vec<u8>) -> Option<ResponseData> + Copy,
  166. B: Fn(Vec<u8>) -> Option<ResponseData> + Copy,
  167. F: Fn(ResponseData) -> Future + Clone,
  168. Future: future::Future<Output=()> + Send + 'static,
  169. {
  170. //1.是否走代理
  171. /*******走代理:根据环境变量配置来决定,如果配置了走代理,没有配置不走*******/
  172. let proxy = match proxy::ParsingDetail::env_proxy(ProxyEnum::WS) {
  173. ProxyResponseEnum::NO => {
  174. // trace!("非 代理");
  175. None
  176. }
  177. ProxyResponseEnum::YES(proxy) => {
  178. // trace!("代理");
  179. Option::from(proxy)
  180. }
  181. };
  182. match connect_async(address_url.clone(), proxy).await {
  183. Ok((ws_stream, _)) => {
  184. info!("socket 链接成功,{}。", address_url);
  185. Self::ws_connected(write_to_socket_rx_arc,
  186. is_first_login,
  187. label,
  188. is_shutdown_arc,
  189. &handle_function,
  190. subscribe_array.clone(),
  191. ws_stream,
  192. message_text,
  193. message_ping,
  194. message_pong,
  195. message_binary).await;
  196. }
  197. Err(e) => {
  198. error!("WebSocket 握手失败:{:?}", e);
  199. }
  200. }
  201. }
  202. //心跳包
  203. pub async fn ping_or_pong(write_tx_clone: Arc<Mutex<UnboundedSender<Message>>>, h_type: HeartbeatType, millis: u64) {
  204. loop {
  205. tokio::time::sleep(Duration::from_millis(millis)).await;
  206. let write_tx_clone = write_tx_clone.lock().await;
  207. write_tx_clone.unbounded_send(
  208. match h_type {
  209. HeartbeatType::Ping => {
  210. Message::Ping(Vec::from("Ping"))
  211. }
  212. HeartbeatType::Pong => {
  213. Message::Pong(Vec::from("Pong"))
  214. }
  215. HeartbeatType::Custom(ref str) => {
  216. Message::Text(str.parse().unwrap())
  217. }
  218. }
  219. ).expect("发送失败");
  220. trace!("发送指令-心跳:{:?}",h_type);
  221. }
  222. }
  223. //数据解析
  224. pub fn analysis_message<T, PI, PO, B>(message: Result<Message, Error>,
  225. message_text: T,
  226. message_ping: PI,
  227. message_pong: PO,
  228. message_binary: B) -> Option<ResponseData>
  229. where T: Fn(String) -> Option<ResponseData>,
  230. PI: Fn(Vec<u8>) -> Option<ResponseData>,
  231. PO: Fn(Vec<u8>) -> Option<ResponseData>,
  232. B: Fn(Vec<u8>) -> Option<ResponseData>
  233. {
  234. match message {
  235. Ok(Message::Text(text)) => message_text(text),
  236. Ok(Message::Ping(pi)) => message_ping(pi),
  237. Ok(Message::Pong(po)) => message_pong(po),
  238. Ok(Message::Binary(s)) => message_binary(s), //二进制WebSocket消息
  239. Ok(Message::Close(c)) => {
  240. let message_str = format!("关闭指令:{:?}", c);
  241. trace!("{:?}",message_str);
  242. Option::from(ResponseData::new("".to_string(), 0, message_str, Value::Null))
  243. }
  244. Ok(Message::Frame(f)) => {
  245. //原始帧 正常读取数据不会读取到该 信息类型
  246. let message_str = format!("意外读取到原始帧:{:?}", f);
  247. trace!("{:?}",message_str);
  248. Option::from(ResponseData::new("".to_string(), -2, message_str, Value::Null))
  249. }
  250. Err(e) => {
  251. let message_str = format!("服务器响应:{:?}", e);
  252. trace!("{:?}",message_str);
  253. Option::from(ResponseData::new("".to_string(), -1, message_str, Value::Null))
  254. }
  255. }
  256. }
  257. //发送数据
  258. pub async fn send_subscribe(write_tx_clone: Arc<Mutex<UnboundedSender<Message>>>, message: Message) -> bool {
  259. let write_tx_clone = write_tx_clone.lock().await;
  260. write_tx_clone.unbounded_send(message.clone()).unwrap();
  261. trace!("发送指令:{:?}",message);
  262. true
  263. }
  264. }
  265. //创建链接
  266. pub async fn ws_connect_async(address_url: String) -> (SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, Message>,
  267. SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>) {
  268. //1.是否走代理
  269. /*******走代理:根据环境变量配置来决定,如果配置了走代理,没有配置不走*******/
  270. let proxy = match proxy::ParsingDetail::env_proxy(ProxyEnum::WS) {
  271. ProxyResponseEnum::NO => {
  272. trace!("非 代理");
  273. None
  274. }
  275. ProxyResponseEnum::YES(proxy) => {
  276. trace!("代理");
  277. Option::from(proxy)
  278. }
  279. };
  280. let (ws_stream, _) = connect_async(address_url, proxy).await.expect("链接失败!");
  281. trace!("WebSocket 握手完成。");
  282. ws_stream.split()
  283. }
  284. pub async fn client(add_url: String) {
  285. let proxy = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(
  286. 127,
  287. 0,
  288. 0,
  289. 1)
  290. ), 7890);
  291. //创建通道 开启线程,向通道写入数据
  292. let (write_tx, write_rx) = futures_channel::mpsc::unbounded();
  293. let (read_tx, read_rx) = futures_channel::mpsc::unbounded();
  294. tokio::spawn(write_sell(write_tx));
  295. //创建socket,,并且读写分离
  296. let (ws_stream, _) = connect_async(add_url, Option::from(proxy)).await.expect("Failed to connect");
  297. trace!("WebSocket handshake has been successfully completed");
  298. let (write, read) = ws_stream.split();
  299. //将socket 的写操作与 写通道链接起来,将数据以ok的结构体封装进行传递
  300. let stdin_to_ws = write_rx.map(Ok).forward(write);
  301. let ws_to_stdout = {
  302. trace!("---1");
  303. //读,循环读取,然后拿到 message,,然后开启异步处理 message,
  304. let result = read.for_each(|message| async {
  305. read_tx.unbounded_send(message.unwrap()).unwrap();
  306. });
  307. trace!("---3");
  308. result
  309. };
  310. tokio::spawn(read_sell(read_rx));
  311. //必须操作。,因为不同于其他的高级语言,有自动内存管理,所以为了防范地址改变,所以需要做此处理
  312. pin_mut!(stdin_to_ws, ws_to_stdout);
  313. future::select(stdin_to_ws, ws_to_stdout).await;
  314. }
  315. //模拟 业务场景中 发送指令给目标交易所
  316. async fn write_sell(tx: UnboundedSender<Message>) {
  317. let _str = json!({
  318. "op": "subscribe",
  319. "args": [
  320. {
  321. // "channel":"orders",
  322. // "instType":"SWAP",
  323. // "instFamily":"BTC-USDT"
  324. "channel":"books5",
  325. "instId":"BTC-USDT"
  326. }
  327. ]
  328. });
  329. let str_array: Vec<String> = vec![
  330. // log_in_to_str(),
  331. // str.to_string(),
  332. ];
  333. let i = 0;
  334. loop {
  335. if str_array.len() > i {
  336. let send_str = str_array.get(i).unwrap();
  337. tx.unbounded_send(Message::Text(send_str.to_string())).unwrap();
  338. }
  339. tokio::time::sleep(Duration::from_secs(5)).await;
  340. tx.unbounded_send(Message::Ping(Vec::from("Ping"))).unwrap();
  341. tx.unbounded_send(Message::Ping(Vec::from("Pong"))).unwrap();
  342. }
  343. }
  344. async fn read_sell(mut rx: futures_channel::mpsc::UnboundedReceiver<Message>) {
  345. loop {
  346. if let Some(message) = rx.next().await {
  347. match message {
  348. Message::Text(s) => {
  349. trace!("Text: {}", s);
  350. }
  351. Message::Binary(s) => {
  352. trace!("Binary: {:?}", s);
  353. }
  354. Message::Ping(s) => {
  355. trace!("Ping: {:?}", s);
  356. }
  357. Message::Pong(s) => {
  358. trace!("Pong: {:?}", s);
  359. }
  360. Message::Close(s) => {
  361. trace!("Close: {:?}", s);
  362. }
  363. Message::Frame(s) => {
  364. trace!("Frame: {:?}", s);
  365. }
  366. }
  367. }
  368. tokio::time::sleep(Duration::from_millis(1)).await
  369. }
  370. }
  371. pub fn log_in_to_str() -> String {
  372. let mut login_json_str = "".to_string();
  373. let access_key: String = "".to_string();
  374. let secret_key: String = "".to_string();
  375. let passphrase: String = "".to_string();
  376. if access_key.len() > 0 || secret_key.len() > 0 || passphrase.len() > 0 {
  377. let timestamp = Utc::now().timestamp().to_string();
  378. // 时间戳 + 请求类型+ 请求参数字符串
  379. let message = format!("{}GET{}", timestamp, "/users/self/verify");
  380. let hmac_key = ring::hmac::Key::new(hmac::HMAC_SHA256, secret_key.as_bytes());
  381. let result = ring::hmac::sign(&hmac_key, &message.as_bytes());
  382. let sign = base64::encode(result);
  383. let login_json = json!({
  384. "op": "login",
  385. "args": [{
  386. "apiKey": access_key,
  387. "passphrase": passphrase,
  388. "timestamp": timestamp,
  389. "sign": sign }]
  390. });
  391. // trace!("---login_json:{0}", login_json.to_string());
  392. // trace!("--登录:{}", login_json.to_string());
  393. login_json_str = login_json.to_string();
  394. }
  395. login_json_str
  396. }