| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- import os
- from typing import List
- import math
- # 定义算法的块大小(字节)
- BLOCK_SIZE = 16 # 例如 128 bits
- # 定义轮数
- NUM_ROUNDS = 10 # 可以根据需要调整
- # 简单的 S-box
- # 在实际应用中,S-box 需要精心设计以防止线性攻击和差分攻击
- S_BOX = [
- 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
- 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
- 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
- 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
- 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
- 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
- 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
- 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
- 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
- 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
- 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
- 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
- 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
- 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
- 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
- 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
- ]
- # 简单的逆 S-box
- INV_S_BOX = [S_BOX.index(i) for i in range(256)]
- # 简单的置换表 (例如,随机打乱 BLOCK_SIZE 的索引)
- # 在实际应用中,置换表也需要精心设计
- PERMUTATION_TABLE = list(range(BLOCK_SIZE))
- # 可以进一步打乱 PERMUTATION_TABLE,例如:
- # import random
- # random.shuffle(PERMUTATION_TABLE)
- # 逆置换表
- INV_PERMUTATION_TABLE = [0] * BLOCK_SIZE
- for i, j in enumerate(PERMUTATION_TABLE):
- INV_PERMUTATION_TABLE[j] = i
- def _bytes_to_matrix(data: bytes) -> List[List[int]]:
- """将字节串转换为 BLOCK_SIZE x BLOCK_SIZE 的矩阵形式 (或其他适合处理的形式)"""
- # 这里为了简化,直接将字节串视为一个 BLOCK_SIZE 长度的列表
- # 更复杂的设计可以将其转换为二维矩阵或其他结构
- if len(data) != BLOCK_SIZE:
- raise ValueError(f"Data must be exactly {BLOCK_SIZE} bytes.")
- return list(data)
- def _matrix_to_bytes(matrix: List[int]) -> bytes:
- """将矩阵形式的数据转换回字节串"""
- if len(matrix) != BLOCK_SIZE:
- raise ValueError(f"Matrix must have exactly {BLOCK_SIZE} elements.")
- return bytes(matrix)
- def _sub_bytes(state: List[int], s_box: List[int]) -> List[int]:
- """应用 S-box 替换"""
- return [s_box[byte] for byte in state]
- def _permute_bytes(state: List[int], permutation_table: List[int]) -> List[int]:
- """应用置换"""
- return [state[permutation_table[i]] for i in range(BLOCK_SIZE)]
- def _xor_bytes(state: List[int], key: bytes) -> List[int]:
- """与密钥进行异或"""
- if len(state) != len(key):
- raise ValueError("State and key must have the same length.")
- return [state[i] ^ key[i] for i in range(BLOCK_SIZE)]
- def _generate_round_keys(key: bytes, num_rounds: int) -> List[bytes]:
- """简单的密钥扩展(需要更复杂的算法来生成高质量的轮密钥)"""
- # 这里只是一个占位符,实际应用中需要更强大的密钥调度算法
- if len(key) != BLOCK_SIZE:
- raise ValueError(f"Key must be exactly {BLOCK_SIZE} bytes.")
- round_keys = [key]
- # 可以根据某种规则从原密钥派生出更多的轮密钥
- for _ in range(num_rounds):
- # 这里只是一个简单的例子,可以进行循环移位、与其他常数异或等操作
- new_key = bytes([ (b + 1) % 256 for b in round_keys[-1]])
- round_keys.append(new_key)
- return round_keys
- def _encrypt_block(block: bytes, round_keys: List[bytes]) -> bytes:
- """加密一个数据块"""
- if len(block) != BLOCK_SIZE:
- raise ValueError(f"Block must be exactly {BLOCK_SIZE} bytes.")
- state = _bytes_to_matrix(block)
- # 初始轮与第一个轮密钥异或
- state = _xor_bytes(state, round_keys[0])
- # 多轮加密
- for i in range(1, NUM_ROUNDS + 1):
- # S-box 替换
- state = _sub_bytes(state, S_BOX)
- # 置换
- state = _permute_bytes(state, PERMUTATION_TABLE)
- # 与轮密钥异或
- state = _xor_bytes(state, round_keys[i])
- # 这里可以添加更多的混合和扩散操作
- return _matrix_to_bytes(state)
- def _decrypt_block(block: bytes, round_keys: List[bytes]) -> bytes:
- """解密一个数据块"""
- if len(block) != BLOCK_SIZE:
- raise ValueError(f"Block must be exactly {BLOCK_SIZE} bytes.")
- state = _bytes_to_matrix(block)
- # 逆向进行多轮解密
- for i in range(NUM_ROUNDS, 0, -1):
- # 与轮密钥异或 (解密轮密钥是加密轮密钥的逆)
- state = _xor_bytes(state, round_keys[i])
- # 逆置换
- state = _permute_bytes(state, INV_PERMUTATION_TABLE)
- # 逆 S-box 替换
- state = _sub_bytes(state, INV_S_BOX)
- # 这里需要添加对应加密时使用的逆向混合和扩散操作
- # 最后与第一个轮密钥异或
- state = _xor_bytes(state, round_keys[0])
- return _matrix_to_bytes(state)
- def encrypt(plaintext: bytes, key: bytes, iv: bytes) -> bytes:
- """
- 使用自定义对称加密算法加密数据 (计数器模式)
- Args:
- plaintext: 要加密的明文 (字节串)
- key: 秘密密钥 (字节串,长度必须为 BLOCK_SIZE)
- iv: 初始化向量 (字节串,长度必须为 BLOCK_SIZE),对于计数器模式是初始计数器值
- Returns:
- 加密后的密文 (字节串)
- """
- if len(key) != BLOCK_SIZE:
- raise ValueError(f"Key length must be {BLOCK_SIZE} bytes.")
- if len(iv) != BLOCK_SIZE:
- raise ValueError(f"IV length must be {BLOCK_SIZE} bytes for this mode.")
- round_keys = _generate_round_keys(key, NUM_ROUNDS)
- ciphertext = b""
- plaintext_len = len(plaintext)
- # 计算需要处理的完整块数
- num_blocks = math.ceil(plaintext_len / BLOCK_SIZE)
- for i in range(num_blocks):
- # 准备当前明文块
- start_index = i * BLOCK_SIZE
- end_index = min(start_index + BLOCK_SIZE, plaintext_len)
- current_block = plaintext[start_index:end_index]
- # 填充最后一个块(如果需要)
- if len(current_block) < BLOCK_SIZE:
- # 使用零填充,实际应用中可以使用其他填充方案(如 PKCS#7)
- current_block += b"\x00" * (BLOCK_SIZE - len(current_block))
- # 计算当前轮的计数器值 (作为伪随机流的输入)
- # Incrementing the IV for each block
- current_counter = int.from_bytes(iv, byteorder='big') + i
- counter_block = current_counter.to_bytes(BLOCK_SIZE, byteorder='big')
- # 使用计数器值作为输入加密,生成伪随机流
- keystream_block = _encrypt_block(counter_block, round_keys)
- # 将明文块与伪随机流进行异或
- encrypted_block = bytes([current_block[j] ^ keystream_block[j] for j in range(BLOCK_SIZE)])
- ciphertext += encrypted_block
- # 在这个简单的计数器模式实现中,密文的长度总是 BLOCK_SIZE 的倍数
- return ciphertext
- def decrypt(ciphertext: bytes, key: bytes, iv: bytes) -> bytes:
- """
- 使用自定义对称加密算法解密数据 (计数器模式)
- Args:
- ciphertext: 要解密的密文 (字节串)
- key: 秘密密钥 (字节串,长度必须为 BLOCK_SIZE)
- iv: 初始化向量 (字节串,长度必须为 BLOCK_SIZE),与加密时使用的相同
- Returns:
- 解密后的明文 (字节串)
- """
- if len(key) != BLOCK_SIZE:
- raise ValueError(f"Key length must be {BLOCK_SIZE} bytes.")
- if len(iv) != BLOCK_SIZE:
- raise ValueError(f"IV length must be {BLOCK_SIZE} bytes for this mode.")
- if len(ciphertext) % BLOCK_SIZE != 0:
- raise ValueError(f"Ciphertext length must be a multiple of {BLOCK_SIZE}.")
- round_keys = _generate_round_keys(key, NUM_ROUNDS)
- plaintext = b""
- ciphertext_len = len(ciphertext)
- num_blocks = ciphertext_len // BLOCK_SIZE
- for i in range(num_blocks):
- # 准备当前密文块
- start_index = i * BLOCK_SIZE
- end_index = start_index + BLOCK_SIZE
- current_block = ciphertext[start_index:end_index]
- # 计算当前轮的计数器值 (作为伪随机流的输入)
- current_counter = int.from_bytes(iv, byteorder='big') + i
- counter_block = current_counter.to_bytes(BLOCK_SIZE, byteorder='big')
- # 使用计数器值作为输入加密,生成与加密时相同的伪随机流
- keystream_block = _encrypt_block(counter_block, round_keys)
- # 将密文块与伪随机流进行异或
- decrypted_block = bytes([current_block[j] ^ keystream_block[j] for j in range(BLOCK_SIZE)])
- plaintext += decrypted_block
- # 在解密后需要移除填充(如果使用了填充)
- # 这里假设使用了零填充,需要找到最后一个非零字节的位置(如果适用)
- # 这是一个简单的去零填充方法,实际应用中需要根据填充方案进行处理
- # 假设最后一个块可能包含填充,需要检查最后一个块的字节,并根据填充方案移除
- # 这里为了简化,不去填充
- return plaintext
- # --- 示例用法 ---
- if __name__ == "__main__":
- print("--- 自创对称加密算法演示 ---")
- # --- 加密部分:用户手动输入明文 ---
- print("\n--- 加密 ---")
- user_plaintext_str = input("请输入要加密的明文: ")
- user_plaintext_data = user_plaintext_str.encode('utf-8') # 将字符串编码为字节串
- # 加密时生成随机的密钥和 IV
- generated_key = os.urandom(BLOCK_SIZE)
- generated_iv = os.urandom(BLOCK_SIZE)
- print(f"\n生成的密钥 Secret Key (hex): {generated_key.hex()}")
- print(f"生成的初始化向量 Initial Vector (hex): {generated_iv.hex()}")
- try:
- ciphertext_data = encrypt(user_plaintext_data, generated_key, generated_iv)
- print(f"\n生成的密文 Ciphertext (hex): {ciphertext_data.hex()}")
- except ValueError as e:
- print(f"加密错误: {e}")
- exit() # 加密失败则退出
- # # --- 解密部分:用户手动输入密钥、IV 和密文 ---
- # print("\n--- 解密 ---")
- # while True:
- # user_key_hex = input(f"请输入 Secret Key (hex, {BLOCK_SIZE*2}位): ")
- # try:
- # user_key_bytes = bytes.fromhex(user_key_hex)
- # if len(user_key_bytes) == BLOCK_SIZE:
- # break # 长度正确,跳出循环
- # else:
- # print(f"错误:密钥长度必须是 {BLOCK_SIZE} 字节(即 {BLOCK_SIZE*2} 位十六进制字符)。请重新输入。")
- # except ValueError:
- # print("错误:请输入有效的十六进制字符串。")
- # while True:
- # user_iv_hex = input(f"请输入 Initial Vector (hex, {BLOCK_SIZE*2}位): ")
- # try:
- # user_iv_bytes = bytes.fromhex(user_iv_hex)
- # if len(user_iv_bytes) == BLOCK_SIZE:
- # break # 长度正确,跳出循环
- # else:
- # print(f"错误:IV 长度必须是 {BLOCK_SIZE} 字节(即 {BLOCK_SIZE*2} 位十六进制字符)。请重新输入。")
- # except ValueError:
- # print("错误:请输入有效的十六进制字符串。")
- # while True:
- # user_ciphertext_hex = input("请输入 Ciphertext (hex): ")
- # try:
- # user_ciphertext_bytes = bytes.fromhex(user_ciphertext_hex)
- # if len(user_ciphertext_bytes) % BLOCK_SIZE == 0:
- # break # 长度是块大小的倍数,跳出循环
- # else:
- # print(f"错误:密文长度必须是块大小 {BLOCK_SIZE} 字节的倍数。请重新输入。")
- # except ValueError:
- # print("错误:请输入有效的十六进制字符串。")
- # try:
- # decrypted_data = decrypt(user_ciphertext_bytes, user_key_bytes, user_iv_bytes)
- # # 尝试将解密后的字节串解码为字符串并打印
- # try:
- # decrypted_str = decrypted_data.decode('utf-8')
- # print(f"\n解密后的明文: {decrypted_str}")
- # except UnicodeDecodeError:
- # # 如果解码失败,说明解密可能不正确,或者原明文不是UTF-8编码的文本
- # print("\n解密后的数据无法以 UTF-8 格式解码,可能解密不正确或原数据格式不同。")
- # print(f"解密后的字节串 (hex): {decrypted_data.hex()}")
- # except ValueError as e:
- # print(f"\n解密错误: {e}")
|